Passivation Remediation of Cd Contaminated Paddy Soils by Mercapto Bentonite
-
摘要: 通过田间种植水稻试验,探究了巯基膨润土(Bent-SH)对镉污染土壤的修复效果及钝化机理。结果表明:添加Bent-SH对土壤理化性质的影响很小,土壤有效态镉含量随Bent-SH添加量的增加逐渐降低,与对照相比,其最大下降率为48.57%。添加Bent-SH降低了土壤镉的迁移能力,降低了大米、秸秆对土壤镉的吸收,其最大下降率分别为72.73%、70.97%。土壤离子交换态镉(EX-Cd)含量最大下降率为54.17%,而铁锰氧化物结合态镉(FMO-Cd)和强有机质结合态镉(SO-Cd)含量最大增长率分别为117.40%和75.00%。Bent-SH添加量与土壤有效态镉、大米镉、秸秆镉含量呈极显著负相关,与土壤FMO-Cd、SO-Cd含量呈显著正相关,与土壤EX-Cd含量呈显著负相关。结果表明Bent-SH可以使土壤中的镉由EX向FMO和SO转化,有效降低镉的活性和生物可利用性,从而实现了镉污染土壤的钝化修复。Abstract: A paddy field experiment was conducted to explore the remediation effect and mechanism of mercapto bentonite (Bent-SH) on Cd contaminated soil. The results showed that Bent-SH had little effect on the physicochemical properties of soils. Compared with the control group, the available Cd in soils was decreased by 48.57% at most. The Bent-SH reduced the migration ability of cadmium in soil and the absorption of Cd by rice and straw, The Cd contents in rice and straw were decrease by 72.73% and 70.97% at most, respectively. The EX-Cd was decreased by 54.17%, while the FMO- and SO-Cd were increased by 117.4% and 75.00% at most, respectively. The Bent-SH addition amounts were extremely significantly negatively correlated with available Cd and Cd in rice and straw, significantly negatively correlated with EX-Cd, but extremely significantly positively correlated with FMO-Cd and SO-Cd. The Bent-SH could reduce the activity and bioavailability of Cd by the conversion of Cd form from EX to FMO and SO, thereby achieving the passivation remediation of Cd contaminated soils.
-
Keywords:
- Mercapto bentonite /
- Passivation remediation /
- Paddy soil /
- Cd
-
表 1 Bent-SH的化学组成
Table 1 The chemical composition of Bent-SH
组分
ComponentS
(mg g−1)Cl
(mg L−1)Na2O
(%)MgO
(%)Al2O3
(%)SiO2
(%)CaO
(%)K2O
(%)Fe2O3
(%)含量 172 32.50 0.11 0.32 35.04 49.54 0.17 2.73 1.80 表 2 Bent-SH对土壤理化性质的影响
Table 2 The effect of Bent-SH on the physicochemical properties in soils
处理
TreatmentpH 速效钾(mg kg−1)
Available potassium有机质(g kg−1)
Organic matter碱解氮(mg kg−1)
Alkali-hydrolyzable nitrogen有效磷(mg kg−1)
Available phosphorusCK 6.93 55.22 41.38 138.43 16.43 T1 6.79 65.81 41.05 141.78 16.94 T2 6.71 53.15 41.40 133.46 19.19 T3 6.97 67.80 42.10 133.41 22.38 T4 6.82 64.15 40.18 138.29 17.61 表 3 Bent-SH添加量与土壤有效态和各形态、大米和秸秆的镉含量相关性分析结果
Table 3 Correlation analysis among Bent-SH addition amount and Cd contents of available state, different Cd forms in soil, Cd contents in rice and straw
指标
Index添加量
Add水溶态
WS离子交换态
EX碳酸盐结合态
CAR腐殖酸结合态
WO铁锰氧化物结合态
FMO强有机质结合态
SO残渣态
RES有效态镉
Bio-Cd大米镉
Rice-Cd秸秆镉
Straw-CdAdd 1 −0.645** −0.658* −0.136 −0.324 0.882** 0.628* −0.06 −0.822** −0.884** −0.915** WS 1 0.913** 0.043 0.343 −0.758** −0.301 −0.435 0.814** 0.573 0.795** EX 1 −0.107 0.262 −0.681* −0.388 −0.466 0.894** 0.376 0.626 CAR 1 0.841** 0.199 0.305 0.312 0.223 −0.093 0.117 WO 1 −0.236 0.216 −0.079 0.502 0.278 0.324 FMO 1 0.547 0.309 −0.798** −0.830** −0.929** SO 1 −0.512 −0.450 −0.603 −0.595 RES 1 −0.224 0.159 0.052 Bio-Cd 1 0.523 0.748** Rice-Cd 1 0.925** Straw-Cd 1 注:*表示相关性显著(P < 0.05),**表示相关性极显著(P < 0.01); -
[1] 林 海, 靳晓娜, 董颖博, 等. 膨润土对不同类型农田土壤重金属形态及生物有效性的影响[J]. 环境科学, 2019, 40(2): 945 − 952. [2] 全国土壤污染状况调查公报[EB/OL]. 2014-04-17 [2020-05-06]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. [3] 徐露露, 马友华, 马铁铮, 等. 钝化剂对土壤重金属污染修复研究进展[J]. 农业资源与环境学报, 2013, 30(6): 25 − 29. doi: 10.3969/j.issn.1005-4944.2013.06.005 [4] SunY B, Li Y, Xu Y M, et al. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105-106: 200 − 206. doi: 10.1016/j.clay.2014.12.031
[5] 徐 奕, 梁学峰, 彭 亮, 等. 农田土壤重金属污染黏土矿物钝化修复研究进展[J]. 山东农业科学, 2017, 49(2): 156 − 162. [6] Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metal polluted agricultural soils using clay minerals: A Review[J]. Pedosphere, 2017, 27(2): 193 − 204. doi: 10.1016/S1002-0160(17)60310-2
[7] 付 成, 朱霞萍, 向念念, 等. 氨基膨润土对铜镍镉污染土壤的钝化修复研究[J]. 岩石矿物学杂志, 2019, 38(6): 807 − 814. doi: 10.3969/j.issn.1000-6524.2019.06.009 [8] 刘 慧, 朱霞萍, 韩 梅, 等. 巯基改性蒙脱石对Cd2+的吸附及酸雨解吸[J]. 非金属矿, 2013, 36(3): 69 − 72. doi: 10.3969/j.issn.1000-8098.2013.03.025 [9] 冯先翠, 朱凰榕, 赵秋香. 巯基改性膨润土对小白菜吸收累积镍的影响[J]. 环境污染与防治, 2017, 39(6): 664 − 668. [10] 何 平, 冯先翠, 朱凰榕, 等. 改性黏土对重金属污染土壤中小白菜吸收累积Pb的影响[J]. 安徽农业科学, 2017, 45(18): 73 − 76. doi: 10.3969/j.issn.0517-6611.2017.18.023 [11] 董 巡, 朱霞萍, 崔 婷. 巯基膨润土的制备工艺及性能[J]. 应用化学, 2020, 37(10): 1156 − 1163. doi: 10.11944/j.issn.1000-0518.2020.10.200075 [12] 孟兴锐, 赖 波, 蒲金国, 等. 巯基膨润土影响土壤镉形态及水稻酶活性研究[J]. 资源节约与环保, 2019, (2): 15 − 16+19. doi: 10.3969/j.issn.1673-2251.2019.02.019 [13] 李 霞, 杨定清, 李旭毅, 等. 秸秆还田下配施石灰、尿素和腐熟剂对水稻Cd吸收累积的影响研究[J]. 中国农学通报, 2019, 35(7): 1 − 6. doi: 10.11924/j.issn.1000-6850.casb17110004 [14] 叶家瑜, 李锡坤, 刘 棕, 等. 生态地球化学评价样品分析技术要求[S]: 北京. 中国地质局, 2005. [15] 李剑睿, 徐应明, 林大松, 等. 水分调控和钝化剂处理对水稻土镉的钝化效应及其机理[J]. 农业环境科学学报, 2014, 33(7): 1316 − 1321. doi: 10.11654/jaes.2014.07.009 [16] 王佳佳, 李 翔, 罗 楠, 等. 以设计精准修复方案为目标的土壤重金属形态分布研究[J]. 生态与农村环境学报, 2018, 34(1): 87 − 95. doi: 10.11934/j.issn.1673-4831.2018.01.011 [17] Hamidpour M, Afyuni M, Kalbasi M, et al. Mobility and plant-availability of Cd(II) and Pb(II) adsorbed on zeolite and bentonite[J]. Applied Clay Science, 2010, 48(3): 342 − 348. doi: 10.1016/j.clay.2010.01.004
[18] 化党领, 朱利楠, 赵永芹, 等. 膨润土、褐煤及其混合添加对铅、镉复合污染土壤重金属形态的影响[J]. 土壤通报, 2020, 304(1): 207 − 212. [19] 徐 奕, 赵 丹, 徐应明, 等. 膨润土对轻度镉污染土壤钝化修复效应研究[J]. 农业资源与环境学报, 2017, 34(1): 38 − 46. [20] Businelli M, Casciari F, Businelli D, et al. Mechanisms of Pb (II) sorption and desorption at some clays and goethite-water interfaces, Agronomie, 2003, 23: 219-225.
[21] 庞婷雯, 杨志军, 黄逸聪, 等. 巯基化、钠化和酸化膨润土对Cu2+, Pb2+和Zn2+的吸附性能研究[J]. 光谱学与光谱分析, 2018, 38(4): 1203 − 1208. [22] Lagadic I L, Mitchell M K, Payne B D. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay[J]. Environmental Science and Technology, 2001, 35: 984 − 990. doi: 10.1021/es001526m
[23] 谭文峰, 周素珍, 刘 凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J]. 土壤, 2007, 39(5): 726 − 730. doi: 10.3321/j.issn:0253-9829.2007.05.009 [24] 杨宏伟, 王明仕, 徐爱菊, 等. 黄河(清水河段)沉积物中锰、钴、镍的化学形态研究[J]. 环境科学研究, 2001, 14(5): 20 − 22. doi: 10.3321/j.issn:1001-6929.2001.05.006