Nutrient Status and Comprehensive Fertility Evaluation of the Citrus Soil in Guang’an District
-
摘要: 弄清柑橘土壤肥力状况,可为柑橘施肥管理提供科学依据。本研究在广安区柑橘种植区调查采集土样109个,以pH、有机质、大量营养元素为评价指标,分析其含量及分布状况,并应用模糊综合评判法对土壤肥力进行数值化综合评价。土壤pH中值为6.97,99.08%的土壤可以种植柑橘;有机质、全氮和碱解氮平均值分别为9.34 g kg−1、0.97 g kg−1和82 mg kg−1,含量缺乏;有效磷和速效钾均值分别为36.22 mg kg−1和133 mg kg−1,有效磷含量丰富,速效钾含量中等。该区土壤综合肥力指数(IFI)平均值为0.43,综合肥力中等(3级),肥力等级为3级和4级的样点高达82.57%;各乡镇土壤平均肥力仅白马乡、花桥镇、崇望乡和东岳乡为4级,其余均为3级。主成分分析表明,有机质、全氮、碱解氮和pH是影响土壤综合肥力的最主要因素。结果表明广安区柑橘土壤综合肥力一般,有机质、全氮和碱解氮含量缺乏,需注重补充相应养分。Abstract: [Objective] The aim is to understand the status of citrus soil fertility and further provide scientific basis for citrus fertilization management. [Method] In this study, 109 soil samples in the citrus planting area of Guang’an District were selected to analyze their content and distribution with their pH, organic matter and nutrient abundance as indexes, and the fuzzy comprehensive evaluation method was applied to carry out numerical comprehensive evaluation of soil fertility. [Result] With a median pH of 6.97, 99.08% of the soil was able for planting citrus; the average contents of organic matter, total nitrogen and alkali-hydrolyzed nitrogen were 9.34 g kg−1, 0.97 g kg−1 and 82 mg kg−1, respectively; the content of available potassium (36.22 mg kg−1) was medium, and available phosphorus (133 mg kg−1) was abundant, respectively. The comprehensive fertility in this area was medium (level 3), a comprehensive fertility index (IFI) of 0.43, among which the sample sites with fertility grades 3 and 4 are as high as 82.57%. In detail, the soil fertility of Baima, Huaqiao, Chongwang and Dongyue townships was grade 4, while that of other townships was reached grade 3. Principal component analysis showed that organic matter, total nitrogen, alkali-hydrolyzed nitrogen and pH were the most important factors affecting soil comprehensive fertility. [Conclusion] The comprehensive fertility of the citrus soil in Guang'an District was ordinary, and the contents of organic matter, total nitrogen and alkali-hydrolyzed nitrogen were insufficient. Therefore, the corresponding nutrients should be supplemented.
-
表 1 土壤养分分级标准
Table 1 Classification standards of soil nutrient status
pH 等级
pH gradepH 有机质(g kg−1)
Organic matter全氮(g kg−1)
Total nitrogen碱解氮(mg kg−1)
Alkali hydrolyzed nitrogen有效磷(mg kg−1)
Available phosphorus速效钾(mg kg−1)
Available potassium等级
Grade强酸性 < 4.5 > 40 > 2 > 150 > 40 > 200 极丰富 酸性 4.5 ~ 5.5 30 ~ 40 1.5 ~ 2 120 ~ 150 20 ~ 40 150 ~ 200 丰富 弱酸性 5.5 ~ 6.5 20 ~ 30 1 ~ 1.5 90 ~ 120 10 ~ 20 100 ~ 150 中等 中性 6.5 ~ 7.5 10 ~ 20 0.75 ~ 1 60 ~ 90 5 ~ 10 50 ~ 100 缺乏 弱碱性 7.5 ~ 8.5 6 ~ 10 0.5 ~ 0.75 30 ~ 60 3 ~ 5 30 ~ 50 很缺乏 碱性 > 8.5 < 6 < 0.5 < 30 < 3 < 30 极缺乏 表 2 隶属函数曲线转折点取值
Table 2 The turning point of membership function
转折点
Turning pointpH 有机质(g kg−1)
Organic matter全氮(g kg−1)
Total nitrogen碱解氮(mg kg−1)
Alkali hydrolyzed nitrogen有效磷(mg kg−1)
Available phosphorus速效钾(mg kg−1)
Available potassiumX1 4.5 6 0.5 30 3 30 X2 6.5 40 2 150 40 200 X3 7.5 X4 8.5 表 3 土壤肥力指标的描述性统计
Table 3 The descriptive statistics of soil fertility factors
乡(镇)
Township(town)pH 有机质(g kg−1)
Organic matter全氮(g kg−1)
Total nitrogen碱解氮(mg kg−1)
Alkali hydrolyzed nitrogen有效磷(mg kg−1)
Available phosphorus速效钾(mg kg−1)
Available potassium白马乡 6.60 5.30 ± 4.15 0.84 ± 0.28 62 ± 20 20.48 ± 26.22 96 ± 71 崇望乡 7.05 7.93 ± 4.85 0.88 ± 0.24 74 ± 28 29.58 ± 24.99 104 ± 75 大安镇 5.79 11.03 ± 6.16 1.00 ± 0.42 91 ± 41 22.33 ± 37.36 124 ± 51 大龙乡 5.98 15.65 ± 4.71 1.11 ± 0.19 97 ± 29 16.85 ± 11.95 108 ± 10 东岳乡 4.98 7.15 ± 3.88 0.88 ± 0.11 95 ± 17 29.12 ± 13.99 81 ± 38 恒升镇 6.67 13.98 ± 1.69 0.97 ± 0.08 86 ± 15 17.55 ± 14.33 144 ± 71 花桥镇 8.18 10.63 ± 3.93 0.70 ± 0.18 62 ± 22 10.73 ± 12.35 158 ± 81 井河镇 7.31 7.40 ± 4.01 0.87 ± 0.17 93 ± 14 46.60 ± 40.96 117 ± 35 龙安乡 6.44 11.62 ± 5.63 1.24 ± 0.33 102 ± 32 48.14 ± 51.74 183 ± 119 龙台镇 7.89 20.98 ± 11.82 1.12 ± 0.35 101 ± 36 28.82 ± 21.07 201 ± 121 彭家乡 7.37 9.18 ± 6.45 0.99 ± 0.31 73 ± 24 130.72 ± 113.96 199 ± 145 石笋镇 5.59 12.88 ± 5.39 0.90 ± 0.22 90 ± 12 25.58 ± 8.82 115 ± 39 兴平镇 7.63 6.67 ± 3.00 0.96 ± 0.24 74 ± 25 38.11 ± 81.08 130 ± 43 全区范围 4.70 ~ 8.60 0.32 ~ 40.90 0.34 ~ 1.83 22 ~ 166 0.60 ~ 352.70 33 ~ 589 全区均值 6.97(中值) 9.34 0.97 82 36.22 133 标准差 − 6.18 0.30 29 55.27 84 变异系数(%) − 66.15 30.51 35.62 152.61 63.69 注:表中各乡镇及全区均值所对应pH数据均为中值。 表 4 土壤肥力质量指标间的相关性
Table 4 Correlation coefficient matrix between soil fertility quality indicators
乡(镇)
Township(town)pH 有机质
Organic matter全氮
Total nitrogen碱解氮
Alkali hydrolyzed nitrogen有效磷
Available phosphorus速效钾
Available potassium有机质 0.014 1 全氮 −0.066 0.769** 1 碱解氮 −0.276** 0.732** 0.817** 1 有效磷 0.016 0.052 0.144 0.013 1 速效钾 0.266** 0.435** 0.541** 0.301** 0.252** 1 土壤肥力综合指数(IFI) −0.035 0.814** 0.902** 0.841** 0.234* 0.649** 注:“**”表示在0.01水平显著相关,“*”表示在0.05水平显著相关。 表 5 各肥力质量指标权重系数
Table 5 Correlation weight coefficient of each fertility quality index
指标
IndexpH 有机质
Organic matter全氮
Total nitrogen碱解氮
Alkali hydrolyzed nitrogen有效磷
Available phosphorus速效钾
Available potassium相关系数均值 0.13 0.40 0.47 0.43 0.10 0.36 权重W 0.07 0.21 0.25 0.23 0.05 0.19 表 6 土壤肥力综合指数及评价等级
Table 6 Comprehensive index and evaluation grade of soil fertility
乡(镇)
Township(town)均值
Mean标准差
Standard deviation变异系数(%)
Coefficient of variation极小值
Min极大值
Max平均肥力等级
Average fertility level白马乡 0.33 0.13 39.67 0.19 0.66 4 崇望乡 0.39 0.14 36.73 0.23 0.66 4 大安镇 0.45 0.21 46.76 0.14 0.73 3 大龙乡 0.50 0.09 17.70 0.42 0.62 3 东岳乡 0.39 0.08 21.07 0.33 0.53 4 恒升镇 0.47 0.11 23.24 0.37 0.60 3 花桥镇 0.37 0.12 33.06 0.27 0.51 4 井河镇 0.44 0.10 21.88 0.32 0.55 3 龙安乡 0.56 0.17 29.67 0.29 0.86 3 龙台镇 0.57 0.23 41.20 0.34 0.91 3 彭家乡 0.47 0.11 23.63 0.37 0.68 3 石笋镇 0.45 0.11 25.29 0.35 0.61 3 兴平镇 0.41 0.11 27.66 0.25 0.64 3 全区 0.43 0.16 35.79 0.14 0.91 3 注:平均肥力等级为IFI均值对应的肥力等级。 表 7 土壤肥力主成分分析
Table 7 Principal component analysis of soil fertility
指标
IndexpH 有机质
Organic
matte全氮
Total
nitrogen碱解氮
Alkali hydrolyzed
nitrogen有效磷
Available
phosphorus速效钾
Available
potassium特征值
Eigenvalues贡献率(%)
Contribution
rate累积贡献率(%)
Cumulative
contribution ratePC1 −0.06 0.88 0.94 0.87 0.19 0.64 2.87 47.82 47.82 PC2 0.81 −0.04 −0.04 −0.36 0.45 0.56 1.32 21.97 69.78 -
[1] Lei J, Liang S S, Tan Q L, et al. NPK fertilization rates and reducing potential in the main citrus producing regions of China[J]. Plant Nutrient Fertility, 2019, 25(9): 1504 − 1513.
[2] 何懿平, 伍存志, 伍兴甲. 江永县柑橘园肥力状况及施肥建议[J]. 湖南农业科学, 2015, (8): 79 − 82. [3] Valani G P, Vezzani F M, Maria K, et al. Soil quality: Evaluation of on-farm assessments in relation to analytical index[J]. Soil and Tillage Research, 2020, 198: 104565. doi: 10.1016/j.still.2019.104565
[4] 周奕廷, 周卫军, 黄 兰, 等. 永兴县冰糖橙果园土壤肥力特征及其综合评价[J]. 中国南方果树, 2019, 48(3): 27 − 33. [5] 王 彤, 朱攀攀, 习建龙, 等. 重庆柑橘园土壤微量营养元素养分状况分析[J]. 果树学报, 2018, 35(12): 44 − 52. [6] 周利利, 段增强, 韩庆忠, 等. 秭归县柑橘园土壤肥力综合评价[J]. 江苏农业学报, 2019, 35(6): 1346 − 1353. doi: 10.3969/j.issn.1000-4440.2019.06.011 [7] 韩 健, 赵宜波, 李先信, 等. 湖南省宽皮柑橘主产区土壤及柑橘叶片和果实营养元素状况分析[J]. 南方农业学报, 2020, 51(11): 2747 − 2756. doi: 10.3969/j.issn.2095-1191.2020.11.018 [8] 陶梦铭, 应 虹, 孙 强, 等. 湖北与湖南柑橘园土壤及树体养分状况[J]. 湖北农业科学, 2016, (13): 3289 − 3292. [9] 吴小芳, 张振山, 范 琼, 等. 海南省果园土壤肥力综合评价研究[J]. 热带作物学报, https://kns.cnki.net/kcms/detail/46.1019.s.20201014.1551.002.html [10] 赵隽宇, 张泽尧, 覃祚玉, 等. 长期连作下广西杉木人工林主产区土壤肥力演变特征与评价[J]. 中南林业科技大学学报, 2020, 40(9): 124 − 131. [11] Bhuyan M H M B, Hasanuzzaman M, Nahar K, et al. Plants Behavior Under Soil Acidity Stress: Insight into Morphophysiological, Biochemical, and Molecular Responses[M]//. Mirza H, Khalid R H, Kamrun N, et al. Plant Abiotic Stress Tolerance, Switzerland: Springer, Cham. 2019: 35-82.
[12] 鲁剑巍, 陈 防, 王富华, 等. 湖北省柑橘园土壤养分分级研究[J]. 植物营养与肥料学报, 2002, 8(4): 390 − 394. doi: 10.3321/j.issn:1008-505X.2002.04.002 [13] 江厚龙, 张保全, 李钠钾, 等. 重庆植烟土壤有效养分含量及其影响因素[J]. 中国烟草科学, 2014, 35(5): 67 − 73. [14] 李有芳, 张超博, 易晓曈, 等. 云南玉溪柑橘园土壤养分状况与分布特征[J]. 土壤, 2020, 52(3): 487 − 493. [15] 周 伟, 吕腾飞, 杨志平. 氮肥种类及运筹技术调控土壤氮素损失的研究进展[J]. 应用生态学报, 2016, 27(9): 3051 − 3058. [16] 潘忠成, 袁 溪, 李 敏. 降雨强度和坡度对土壤氮素流失的影响[J]. 水土保持学报, 2016, 30(1): 9 − 13. [17] Gou J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008 − 1010. doi: 10.1126/science.1182570
[18] 张芸萍, 易 克, 谢春凤, 等. 云南富源红壤烟区酸碱度空间分布及其与主要养分关系研究[J]. 扬州大学学报(农业与生命科学版), 2020, 9(5): 113 − 118. [19] 刘汝亮, 王 芳, 王开军, 等. 控释氮肥侧条施用对东北地区水稻产量和氮肥损失的影响[J]. 水土保持学报, 2018, 32(2): 252 − 256. [20] 刘 娟, 张乃明, 邓 洪. 勐海县茶园土壤养分状况及肥力质量评价[J]. 农业资源与环境学报, 2021, 38(1): 79 − 86. [21] 李寿田, 周健民, 王火焰, 等. 不同土壤磷的固定特征及磷释放量和释放率的研究[J]. 土壤学报, 2003, 40(6): 908 − 914. doi: 10.3321/j.issn:0564-3929.2003.06.016 [22] Li Z G, Zhang Y H, Xia S J, et al. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas[J]. Global Ecology and Conservation, 2019, (19): 663.
[23] 牛君仿, 冯俊霞, 张喜英. 不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 686 − 693. [24] 位高生, 胡承孝, 谭启玲, 等. 氮磷减量施肥对琯溪蜜柚果实产量和品质的影响[J]. 植物营养与肥料学报, 2018, 24(2): 471 − 478. doi: 10.11674/zwyf.17331 [25] 戴士祥, 任文杰, 滕 应, 等. 安徽省主要水稻土基本理化性质及肥力综合评价[J]. 土壤, 2018, 50(1): 66 − 72. [26] Ohana-Levi N, Ben-Gal A, Peeters A, et al. A comparison between spatial clustering models for determining N-fertilization management zones in orchards[J]. Precision Agriculture, 2020, (3)