The Mechanism of Rhizosphere Effect on Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soil: A Review
-
摘要: 多环芳烃类有机污染物在土壤中可长期存在,进而通过食物链对人类健康产生重大潜在风险。对多环芳烃污染土壤进行植物修复是一种环境友好且经济有效的污染补救策略。进行植物根际效应机制研究对于开发可持续性多环芳烃污染土壤的植物修复技术具有重要指导意义。对近年来的相关研究工作进行了总结,结果表明:多种禾本科植物具有较强的多环芳烃污染耐受性和较好的修复效能,利用多植物混植的联合修复方式表现出优于单一植物的修复优势。低分子量有机酸类根系分泌物通过与土壤中多环芳烃污染物形成反馈回路决定植物修复体系中多环芳烃的命运。修复植物根系分泌物可塑造特定的根际微生物区系,根际微生物可通过多种机制来降解土壤环境中的多环芳烃。针对在植物修复多环芳烃污染土壤研究过程中尚存在一些问题,提出了未来植物修复根际效应机理研究中应该关注的重点和方向,旨在为优化多环芳烃污染土壤植物修复技术提供科学依据与理论参考。Abstract: The organic pollutants of polycyclic aromatic hydrocarbons (PAHs) can existinthesoil environment for a long time. They could pose a great threat to human health and cause inestimable damage once they were infiltratedinto the food chain. Phytoremediationis an environmentally friendly and cost-effective approach for the remediation of PAHs contaminated soil due to the rhizospheric effect on removing PAHs pollutants from soil. So it is significant to study the mechanism of rhizosphere effecton the phytoremediation of PAHs contaminated soil. This review summarized therelative researchprogress, showing that various plants of monocotyledons poaceae had better toleranceand remediation potential to remove PAHs from the contaminated soil. It was demonstrated that the combinationremediation of multiple plants could be the most advantageous approach than that of single plant. The root exudates with low-molecular-weight organic acids (LMWOAs) released by the remediation plants combined with PAHs pollutants in the surrounding environments formeda feedback loop to determine the fate of PAHs in the phytoremediation. The root exudates of the remediation plants could be used to establish the specific rhizospheric microflora that could degrade PAHs byseveral different mechanisms. Aiming at a series of problems existed at present in the rhizosphere effects of PAHs phytoremediation, the key points and directions concerned in the future research were proposed, based on the review of the perspectives of roots, root exudates, rhizosphere microorganisms and their interactions, in order to provide a scientific basis and a theoretical reference for the development of phytoremediation technology inthe PAHs polluted soil.
-
图 2 多种植物修复策略示意图(引自Chandra et al.并稍作修改[15])
Figure 2. Schematic representation of various phytoremediation strategies
表 1 多环芳烃类污染土壤的植物修复(近5年的研究案例)
Table 1 Phytoremediation of PAHs in the soil(a case study in the past 5 years)
植物
Plant污染修复效果
Remediation effectiveness参考文献/国家
Reference/Country豆科 大豆(Glycinemax) 植物培养30 d,收集根系分泌物与分枝杆菌菌株混匀,PAHs去除率可达67% ~ 75%,但早期对PAHs降解效果显著,随着根系分泌物的耗竭降解能力下降。 [25]/中国 黄羽扇豆(Lupinus luteus) 周期14 d,植株生长在苯并[a]芘浓度小于100 mg kg−1时无毒性症状,但在垃圾填埋场土壤中生长时会表现出毒性症状(周期28 d)。 [26]/西班牙 红三叶(Trifolium pratense) 周期1 a的户外盆栽试验,PAHs去除率90%。 [27]/比利时 紫花苜蓿(Medicago sativa) 周期60 d的盆栽试验或90 d的田间试验,PAHs去除率15% ~ 50%。其中微生物和紫花苜蓿联合修复比单独修复有效。 [27-28]/比利时、中国 周期40 d的盆栽试验,菲、蒽、芘总降解率95%。去除率受各多环芳烃初始土壤浓度的影响。 [29]/巴西 豌豆(Pisum sativum) 周期21 d的盆栽试验,萘去除率67%,植物能正常生长并保持其叶绿素和类胡萝卜素的含量不受影响。 [30]/阿尔及利亚 四棱豆(Psophocarpus tetragonolobus) 周期90 d的盆栽试验,芴、蒽、芘的去除率分别为61.2%、71.5%、96%,添加氮源可提高污染物的生物降解速率。 [31]/泰国 禾本科 高羊茅(Festuca arundinacea) 周期60 d的根盒试验,植物根际土壤PAHs去除率比无植物对照提高11%。根际土壤中细菌总数的丰度和活性
增加。[32]/中国 高羊茅/紫羊茅(Festuca rubra) 周期105 d的盆栽试验,总PAHs降解率94% ~ 96%。细菌的功能和遗传多样性增加。 [33]/波兰 芦苇(Phragmites australis) 周期75 d的盆栽试验,低浓度芘的去除率比高浓度
芘的高。[34]/日本 苏丹草(Sorghum vulgare) 周期20 d的盆栽试验,4种PAHs总去除率98%。苏丹草根际鞘脂单胞菌富集,增强PAHs耗散。 [23]/印度 水稻(Oryza sativa) 盆栽试验(从幼苗到成熟),特定PHAs在水稻根系、茎叶、稻壳、籽粒中累积。 [35]/中国 玉米(Zea mays) 玉米培养30 d后,收集根系分泌物与分枝杆菌菌株混匀,PAHs去除率69% ~ 78%。 [25]/中国 火凤凰(a mixture of Festuca) 周期150 d的盆栽试验,8种PAHs总去除率99%。微生物多样性增加,促进植物根系生长。 [24]/中国 周期150 d的盆栽试验,低、高分子量PAHs去除率分别为65%、68%。 [36]/中国 菊科 向日葵(Helianthus annuus) 周期90 d的盆栽试验,联合蚯蚓粪菲降解率57%。 [37]/中国 紫松果菊(Echinacea purpurea) 周期150 d的盆栽试验,4种PAHs总去除率57%。植物地下生物量对多环芳烃去除率影响较大。 [7]/中国 小蓬草(Conyza canadensis) 周期60 d的盆栽试验,菲、芘消散率为24% ~ 30%。低浓度硒可促进污染物的消散。 [10]/中国 藜科 厚皮菜(Beta vulgaris) 周期60 d的盆栽试验,萘、芘、茚苯芘去除率分别为91%、60%、36%。厚皮菜提高了土壤的氧化还原
电位。[38]/中国 禾本科/藜科 苏丹草、黑麦草(Lolium perenne)、香根草(Vetiveria zizanioides)与甜菜(Beta vulgaris)
间作周期90 d的盆栽试验,4种PAHs总去除率分别为85%、80%、84%。种植植物增强了土壤中多酚氧化酶和过氧化氢酶的活性。 [39]/中国 豆科/禾本科 燕麦(Avena sativa)、三叶草(Trifolium repens)、玉米、苏丹草、香根草、紫花苜蓿、黑麦草、向日葵、高羊茅等14种植物 周期50 d的盆栽试验,苯并[a]芘去除率6% ~ 26%,芘去除率14% ~ 40%。苏丹草、香根草、玉米、向日葵去除量最大,C4植物比C3植物更有效降解PAHs。 [40]/澳大利亚 -
[1] Guarino C, Zuzolo D, Marziano M, et al. Investigation and assessment for an effective approach to the reclamation of polycyclic aromatic hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy[J]. Scientific Reports, 2019, 9(1): 11522. doi: 10.1038/s41598-019-48005-7
[2] Gupta S, Pathak B, Fulekar H M, et al. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: Areview[J]. Reviews in Environmental Science and Bio/Technology, 2014, 14(1): 241 − 269.
[3] Ren J, Wang X P, Gong P, et al. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming[J]. Environmental Science and Technology, 2019, 53(7): 3589 − 3598. doi: 10.1021/acs.est.9b00698
[4] Bao H Y, Wang J F, Zhang H, et al. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs contaminated soils[J]. Journal of Hazardous Materials, 2020, 385: 121595. doi: 10.1016/j.jhazmat.2019.121595
[5] Sarma H, Sonowal S, Prasad M N V. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds a microcosmic study[J]. Ecotoxicology and Environmental Safety, 2019, 176: 288 − 299. doi: 10.1016/j.ecoenv.2019.03.081
[6] 唐婷婷, 金卫根. 土壤PAHs污染的微生物修复[J]. 中国水土保持, 2010, (3): 41 − 43. doi: 10.3969/j.issn.1000-0941.2010.03.017 [7] 张晓庆, 徐 丽, 齐 悦, 等. 紫松果菊对多环芳烃重污染土壤修复效能[J]. 生态学杂志, 2018, 37(2): 492 − 497. [8] 荆诚然, 闫文德, 王姣龙. 根系分泌物及其在修复多环芳烃污染土壤中的应用[J]. 中国水土保持, 2017, (5): 55 − 58. doi: 10.3969/j.issn.1000-0941.2017.05.018 [9] Kotoky R, Rajkumari J, Pandey P, et al. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil[J]. Journal of Environmental Management, 2018, 217: 858 − 870. doi: 10.1016/j.jenvman.2018.04.022
[10] Xi Y, Liu H G, Johnson D, et al. Selenium enhances Conyza canadensis phytoremediation of polycyclic aromatic hydrocarbons in soil[J]. Journal of Soils and Sediments, 2019, 19: 2823 − 2835. doi: 10.1007/s11368-019-02274-x
[11] Jia H, Lu H, Liu J, et al. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments[J]. Environmental Science and Pollution Research, 2016, 23(6): 5566 − 5576. doi: 10.1007/s11356-015-5772-0
[12] Ni N, Kong D Y, Wu W Z, et al. The role of biochar in reducing the bioavailability and migration of persistent organic pollutants in soil-plant systems: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(17): 157 − 165.
[13] Sandermann H. Higher plant metabolism of xenobiotics: the ‘green liver’ concept[J]. Pharmacogenetics, 1994, 4(5): 225 − 241. doi: 10.1097/00008571-199410000-00001
[14] Gianfreda L, Rao M A. Potential of extra cellular enzymes in remediation of polluted soils: A review[J]. Enzyme and Microbial Technology, 2004, 35(4): 339 − 354. doi: 10.1016/j.enzmictec.2004.05.006
[15] Chandra R, Dubey N K, Kumar V. Phytoremediation of Environmental Pollutants[M]. New York: CRC Press, 2018.
[16] Hernández-Vega J C, Cady B, Kayanja G, et al. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase[J]. Journal of Hazardous Materials, 2017, 321: 268 − 280. doi: 10.1016/j.jhazmat.2016.08.058
[17] Schwab A P, Al-Assi A A, Banks M K. Adsorption of naphthalene onto plant roots[J]. Journal of Environmental Quality, 1998, 27(1): 220 − 224.
[18] Sun T R, Cang L, Wang Q Y, et al. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. Journal of hazardous materials, 2010, 176(1-3): 919 − 925. doi: 10.1016/j.jhazmat.2009.11.124
[19] Wang M C, Chen Y T, Chen S H, et al. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa[J]. Chemosphere, 2012, 87(3): 217 − 225. doi: 10.1016/j.chemosphere.2011.12.063
[20] Kang F X, Chen D S, Gao Y Z, et al. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)[J]. BMC Plant Biology, 2010, 10(1): 210. doi: 10.1186/1471-2229-10-210
[21] Olson P E, Castro A, Joern M, et al. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbone-contaminated soil[J]. Journal of Environmental Quality, 2007, 36(5): 1461 − 1469. doi: 10.2134/jeq2006.0371
[22] Moreno-Barriga F, Díaz V, Acosta J A, et al. Organic matter dynamics, soil aggregation and microbial biomass and activity in technosols created with metalliferous mine residues, biochar and marble waste[J]. Geoderma, 2017, 301: 19 − 29. doi: 10.1016/j.geoderma.2017.04.017
[23] Dominguez J J A, Bacosa H P, Chien M F, et al. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (sorghum × drummondii)[J]. Chemosphere, 2019, 234: 789 − 795. doi: 10.1016/j.chemosphere.2019.05.290
[24] Liu R, Xiao N, Wei S H, et al. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix[J]. Science of the Total Environment, 2014, 473-474: 350 − 358. doi: 10.1016/j.scitotenv.2013.12.027
[25] Guo M X, Gong Z Q, Miao R H, et al. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure[J]. Ecological Engineering, 2017, 99: 22 − 30. doi: 10.1016/j.ecoleng.2016.11.018
[26] Gutierrez-Gines M J, Hernandez A J, Perez-Leblic M I, et al. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria[J]. Journal of Environmental Management, 2014, 143: 197 − 207.
[27] Davin M, Renard E, Lefébure K, et al. Temporal evolution of PAHs bioaccessibility in an aged-contaminated soil during the growth of two fabaceae[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 4016. doi: 10.3390/ijerph17114016
[28] 刘 鑫, 黄兴如, 张晓霞, 等. 高浓度多环芳烃污染土壤的微生物-植物联合修复技术研究[J]. 南京农业大学学报, 2017, 40(4): 632 − 640. doi: 10.7685/jnau.201606036 [29] Alves W S, Manoel E A, Santos N S, et al. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar[J]. International Journal of Phytoremediation, 2018, 20(8): 747 − 755. doi: 10.1080/15226514.2018.1425663
[30] Agoun-Bahar S, Djebbar R, Nait A T, et al. Soil-to-plant transfer of naphthalene and its effects on seedlings pea (Pisum sativum L.) grown on contaminated soil[J]. Environmental Technology, 2019, 40(28): 3713 − 3723. doi: 10.1080/09593330.2018.1485752
[31] Waraporn C C, Theerarat S Y, Khanitta S T, et al. Growth and phytoremediation efficiency of winged bean in fluorene- and pyrene-contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5): 631 − 636. doi: 10.1007/s00128-018-2479-1
[32] Guo M X, Gong Z Q, Miao R H, et al. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: Bacterial community and functional gene expression mechanisms[J]. Chemosphere, 2018, 212: 15 − 23. doi: 10.1016/j.chemosphere.2018.08.057
[33] Borowik A, Wyszkowska J, Gałązka A, et al. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil[J]. Environmental Science and Pollution Research, 2019, 26(27): 27738 − 27751. doi: 10.1007/s11356-019-05888-3
[34] Jeelani N, Yang W, Zhu H L, et al. Phytoremediation for co-contaminated soils of cadmium and pyrene using Phragmites australis (common reed)[J]. International Journal of Phytoremediation, 2020, 22(13): 1385 − 1395. doi: 10.1080/15226514.2020.1780411
[35] Patowary R, Patowary K, Devi A, et al. Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativaL. grown in soil contaminated with crude oil[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(1): 120 − 126. doi: 10.1007/s00128-016-1990-5
[36] Dai Y, Liu R, Zhou Y, et al. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities[J]. Environment International, 2019, 136: 105421.
[37] 刘晋波, 呼世斌, 李晓娜, 等. 蚯蚓粪对油葵修复菲污染土壤的强化作用[J]. 环境工程, 2017, 35(6): 175 − 179. [38] 王劲骥, 罗 杰. 不同种植密度的厚皮菜对土壤中3种多环芳烃修复效果的试验研究[J]. 安全与环境工程, 2017, 24(4): 64 − 68. [39] 王娇娇, 呼世斌, 魏丽琼, 等. 甜菜与牧草间作对多环芳烃污染土壤的修复作用[J]. 农业环境科学学报, 2016, 35(6): 1090 − 1096. doi: 10.11654/jaes.2016.06.010 [40] Sivaram A K, Logeshwaran P, Lockington R, et al. Impact of plant photosystems in the remediation of benzo [a] pyrene and pyrene spiked soils[J]. Chemosphere, 2017, 193: 625 − 634.
[41] Liu X, Cao L, Wang Q, et al. Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum[J]. Environmental Science and Pollution Research, 2017, 24(23): 18946 − 18952. doi: 10.1007/s11356-017-9515-2
[42] Jin K, White P J, Whalley W R, et al. Shaping an optimal soil by root-soil interaction[J]. Trends in Plant Science, 2017, 22: 823 − 829. doi: 10.1016/j.tplants.2017.07.008
[43] Yoshitomi K J, Shann J R. Corn (Zea mays L.) root exudates and their impact on C-14-pyrene mineralization[J]. Soil Biology and Biochemistry, 2001, 33(12): 1769 − 1776.
[44] Gao Y, Hu X, Zhou Z, et al. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils[J]. Environmental Pollution, 2017, 222: 465 − 476. doi: 10.1016/j.envpol.2016.11.076
[45] Anithadevi K S, Logeshwaran P, Robin L, et al. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria[J]. Chemosphere, 2018, 222: 132 − 140.
[46] An C J, Huang G H, Wei J, et al. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment[J]. Water Research, 2011, 45(17): 5501 − 5510. doi: 10.1016/j.watres.2011.08.011
[47] Sun B Q, Gao Y Z, Liu J, et al. Impact of different root exudates constituents on the availability of phenanthrene in soil[J]. Soil Science Society of America Journal, 2012, 76(6): 2041 − 2050. doi: 10.2136/sssaj2011.0417
[48] Liu W X, Hou J Y, Wang Q L, et al. Collection and analysis of root exudates of Festuca arundinaceaL. and their role in facilitating the phytoremediation of petroleum-contaminated soil[J]. Plant and Soil, 2015, 389(1/2): 109 − 119.
[49] Jiang S, Xie F, Lu H, et al. Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons[J]. Environmental Science and Pollution Research, 2017, 24(13): 12484 − 12493. doi: 10.1007/s11356-017-8845-4
[50] 胡芳雨, 孟凡波, 张 闻, 等. 黑麦草根系分泌物氨基酸组分对PAHs胁迫的响应[J]. 农业环境科学学报, 2020, 39(9): 1937 − 1945. doi: 10.11654/jaes.2020-0414 [51] Košnář Z, Částková T, Wiesnerová L, et al. Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relation to the extracellular enzyme activities[J]. Journal of Environmental Sciences, 2019, 76: 249 − 258. doi: 10.1016/j.jes.2018.05.007
[52] Dubrovskaya E, Pozdnyakova N, Golubev S, et al. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation[J]. Chemosphere, 2019, 169: 224 − 232.
[53] Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470 − 480. doi: 10.1038/s41564-018-0129-3
[54] 申国兰, 李 利, 陈 莎. 微生物降解石油源多环芳香烃的研究进展[J]. 土壤, 2018, 50(1): 16 − 27. [55] Li J B, Luo C L, Zhang D Y, et al. Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates[J]. Soil Biology and Biochemistry, 2019, 128: 100 − 110. doi: 10.1016/j.soilbio.2018.10.008
[56] Galazka A, Grządziel J, Gałązka R, et al. Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons[J]. Frontiers in Microbiology, 2018, 9: 1923. doi: 10.3389/fmicb.2018.01923
[57] Vaidya S, Jain K, Madamwar D, et al. Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of pseudomonas, burkholderia, and rhodococcus (PBR)[J]. Biotechnology, 2017, 7(1): 29.
[58] Cavalcanti T G, Souza A F D, Ferreira G F, et al. Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil[J]. Waste and Biomass Valorization, 2019, 10(1): 205 − 214. doi: 10.1007/s12649-017-0041-8
[59] Koshlaf E, Shahsavari E, Haleyur N, et al. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation[J]. Geoderma, 2019, 338: 216 − 225. doi: 10.1016/j.geoderma.2018.12.001
[60] Song M K, Yang Y, Jiang L F, et al. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium[J]. Environmental Pollution, 2017, 220: 1059 − 1067. doi: 10.1016/j.envpol.2016.11.037
[61] Xu Y C, Liu T T, Zhu X F, et al. Quantitative analysis of genetic associations in the biodegradative pathway of PAHs in wetland sediments of the Bohai coast region[J]. Chemosphere, 2019, 218: 282 − 291. doi: 10.1016/j.chemosphere.2018.11.059
[62] Wang L W, Li F, Zhan Y, et al. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23(14): 14451 − 14461. doi: 10.1007/s11356-016-6630-4
[63] Garrido-Sanz D, Redondo-Nieto M, Guirado M, et al. Metagenomic insights into the bacterial functions of a diesel-degrading consortium for the rhizoremediation of diesel-polluted soil[J]. Genes, 2019, 10(6): 456. doi: 10.3390/genes10060456
[64] Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364: 6440.
[65] Song Y, Li Y, Zhang W, et al. Novel biochar-plant tandem approach for remediating hexachlorobenzene contaminated soils: Proof-of-concept and new insight into the rhizosphere[J]. Journal of Agricultural and Food Chemistry, 2016, 64(27): 5464 − 5471. doi: 10.1021/acs.jafc.6b01035
[66] Oberai M, Khanna V. Rhizoremediation-plant microbe interactions in the removal of pollutants[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(1): 2280 − 2287. doi: 10.20546/ijcmas.2018.701.276
[67] Crampona M, Bodilisb J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential[J]. Journal of Hazardous Materials, 2018, 359: 500 − 509. doi: 10.1016/j.jhazmat.2018.07.088
[68] Swenson T L, Karaoz U, Swenson J M, et al. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics[J]. Nature Communications, 2018, 9: 19. doi: 10.1038/s41467-017-02356-9