工业和农业污染稻田土壤重金属的赋存形态及水稻吸收运移比较

李颢, 陈敬龙, 段华泰, 王静波, 李婉秋, 李恋卿, 潘根兴

李 颢, 陈敬龙, 段华泰, 王静波, 李婉秋, 李恋卿, 潘根兴. 工业和农业污染稻田土壤重金属的赋存形态及水稻吸收运移比较[J]. 土壤通报, 2022, 53(1): 204 − 212. DOI: 10.19336/j.cnki.trtb.2021030905
引用本文: 李 颢, 陈敬龙, 段华泰, 王静波, 李婉秋, 李恋卿, 潘根兴. 工业和农业污染稻田土壤重金属的赋存形态及水稻吸收运移比较[J]. 土壤通报, 2022, 53(1): 204 − 212. DOI: 10.19336/j.cnki.trtb.2021030905
LI Hao, CHEN Jing-long, DUAN Hua-tai, WANG Jing-bo, LI Wan-qiu, LI Lian-qing, PAN Gen-xing. Comparison of the Forms of Heavy Metals and the Absorption and Transport by Rice between Industrial and Agricultural Contaminated Paddy Soils[J]. Chinese Journal of Soil Science, 2022, 53(1): 204 − 212. DOI: 10.19336/j.cnki.trtb.2021030905
Citation: LI Hao, CHEN Jing-long, DUAN Hua-tai, WANG Jing-bo, LI Wan-qiu, LI Lian-qing, PAN Gen-xing. Comparison of the Forms of Heavy Metals and the Absorption and Transport by Rice between Industrial and Agricultural Contaminated Paddy Soils[J]. Chinese Journal of Soil Science, 2022, 53(1): 204 − 212. DOI: 10.19336/j.cnki.trtb.2021030905

工业和农业污染稻田土壤重金属的赋存形态及水稻吸收运移比较

基金项目: 国家重点研发计划项目(2016YFD0800306)资助
详细信息
    作者简介:

    李 颢(1993−),汉族,河南省安阳市人,硕士,主要从事土壤重金属污染方面的研究。E-mail: lihao@njau.edu.cn

    通讯作者:

    李恋卿: E-mail: lqli@njau.edu.cn

  • 中图分类号: X53

Comparison of the Forms of Heavy Metals and the Absorption and Transport by Rice between Industrial and Agricultural Contaminated Paddy Soils

  • 摘要:
      目的  稻田土壤重金属污染是当前农产品安全生产关注的重要问题。本文比较分析工业和农业污染源稻田土壤重金属的赋存形态及水稻吸收运移,以期为稻田土壤重金属污染控制提供参考。
      方法  在长江中下游地区调查选取工业源和农业源重金属污染稻田各27块,在水稻成熟期使用抖根法采集根际土壤及水稻根系和籽粒样品,采用Tessier七步提取法分析土壤中重金属赋存形态,及土壤-水稻系统重金属迁移富集。
      结果  所分析的Cd、Pb、Cu和Zn土壤全量,工业源稻田均显著高于农业源稻田30%以上,特别是土壤Cd全量达到农用地土壤污染风险管控值的280%以上。土壤中重金属均以残渣态为主(占总量46.84% ~ 64.99%)。Zn、Cd和Cu的交换态占比,工业源土壤高于农业源;相反,腐殖酸结合态占比农业源土壤高于工业源;工业源土壤中Cd、Zn表现出较高的土壤-作物迁移性。工业源水稻籽粒Cd、Cu、Pb含量分别高出农业源76%、172%和298%。冗余分析表明,重金属土壤有效态含量是影响水稻根系重金属累积的主要因子,同时,工业源中水稻根系重金属的累积对土壤pH值响应较强烈,而农业源对土壤有机质的响应更加强烈。
      结论  土壤重金属的赋存形态及水稻的吸收因污染途径的不同存在一定的差异,工业污染稻田中土壤重金属有效性较高,植物迁移与食物污染风险较大。

     

    Abstract:
      objective  Heavy metal pollution of paddy soil is an important issue for the quality and safety of agricultural products. The differences in the forms of heavy metals and their absorption and transport by rice in industrial and agricultural contaminated sources were investigated in order to provide a reference for heavy metal contamination control in paddy soils.
      Method  In the middle and lower reaches of the Yangtze River, 27 rice fields contaminated by heavy metals from industrial sources and agricultural sources were selected. The root shaking method was used to collect rhizosphere soil, rice roots and rice seeds during the rice maturity period.
      Result  The contents of Cd, Pb, Cu and Zn in the soil contaminated by industrial source were more than 30% higher than by the agricultural source rice field. Meanwhile, the total content of soil Cd was more than 280% of soil pollution risk control value of agricultural land. The residual form was the main form of heavy metal, accounting for 46.84% to 64.99%. The exchangeable form of Zn, Cd and Cu from industrial source were higher than those from agricultural source. The proportion of humic acid binding heavy metals in the agricultural soil was higher than that in the industrial soil. Cd and Zn in the industrial source soils showed a high soil-crop mobility. The contents of Cd, Cu, Pb in rice seeds from industrial source was 76%, 172% and 298% higher than those from agricultural source. RDA showed that the main factor for the accumulation of heavy metals in rice roots was its bioavailable form in soil. The accumulation of heavy metals in rice roots from industrial source responded more strongly to pH, while that from agricultural source responded more strongly to soil organic matter.
      Conclusion  Therefore, the forms of heavy metals in soil and the absorption of heavy metals by rice were different due to different pollution routes. In rice fields contaminated by industry, the availability of heavy metals and the risks of plant migration and food contamination were higher.

     

  • 图  1   两种典型污染源水稻土采样点分布图

    Figure  1.   Sampling sites of paddy soil from two typical contamination sources

    图  2   两种污染源稻田土壤中不同形态Cd、Pb、Cu、Zn含量占比

    Figure  2.   Proportions of different forms of heavy metals in paddy soil from two pollution sources

    图  3   水稻根系重金属含量与土壤重金属形态及理化性质的冗余分析

    Figure  3.   Redundancy analysis for heavy metal contents in rice root,and soil heavy metal forms and soil physical and chemical properties

    表  1   改进的Tessier顺序提取法[19]

    Table  1   Improved Tessier sequential extraction method

    形态
    Form
    编号
    Number
    提取剂
    Extractant
    操作步骤
    Step
    水溶态 F1 25 ml超纯水 200次/分振荡2 h
    离子交换态 F2 25 ml 1.0 M的MgCl2(pH = 7.0) 200次/分振荡2 h
    碳酸盐结合态 F3 25 ml 1.0 M的CH3COONa(pH = 5.0) 200次/分振荡5 h
    腐殖酸结合态 F4 50 ml 0.1 M的Na4PO7(pH = 10.0) 200次/分振荡3 h,加HNO3消煮
    铁锰结合态 F5 50 ml 0.25 M的HONH3CL-HCl混合液 200次/分振荡6 h
    强有机结合态 F6 3 ml HNO3,8 ml H2O2,2.5 ml 3.2 M的CH3COONH4-HNO3混合溶液 83 ℃ ± 3 ℃恒温水浴2.5 h,静置10 h离心,取上清液加HNO3和HCLO4消煮
    残渣态 F7 5 ml混酸(HCL+HNO3 = 4+1) 消煮
    下载: 导出CSV

    表  2   土壤基本理化性质

    Table  2   Physical and chemical properties of tested soils

    性质
    Property
    含量范围
    Content range
    平均值
    Mean
    中位数
    Median
    标准差
    Standard deviation
    工业源
    Industrial
    source
    农业源
    Agricultural
    source
    工业源
    Industrial
    source
    农业源
    Agricultural
    source
    工业源
    Industrial
    source
    农业源
    Agricultural
    source
    工业源
    Industrial
    source
    农业源
    Agricultural
    source
    SOM(g kg−1 22.50 ~ 32.84 22.52 ~ 54.53 26.88 36.37 26.71 33.61 2.98 9.69
    全氮(g kg−1 1.09 ~ 1.63 1.47 ~ 1.76 1.35 1.60 1.35 1.59 0.21 0.11
    速效磷(mg kg−1 124.79 ~ 150.39 131.79 ~ 165.36 137.24 148.98 135.36 144.79 7.79 11.99
    速效钾(mg kg−1 81.26 ~ 98.77 86.54 ~ 101.31 90.37 93.80 91.57 94.17 6.45 6.12
    pH 5.44 ~ 6.04 5.70 ~ 7.30 5.85 6.35 5.97 6.40 0.20 0.49
    CEC(cmol kg−1 5.74 ~ 10.89 5.26 ~ 9.69 7.57 7.41 7.20 7.20 1.29 1.12
    砂粒(%) 25.0 ~ 43.0 21.0 ~ 41.0 32.0 30.0 30.0 31.0 7.0 6.6
    粉粒(%) 51.0 ~ 66.0 52.0 ~ 66.0 59.8 59.3 61.0 59.5 5.5 4.2
    黏粒(%) 6.0 ~ 13.0 3.0 ~ 21.0 8.2 10.7 7.0 7.5 2.8 6.8
    下载: 导出CSV

    表  3   工业和农业源污染稻田土壤重金属全量

    Table  3   Heavy metal contents in paddy soils contaminated by industrial and agricultural sources

    污染源
    Contamination source
    均值 ± 标准差(mg kg−1
    Mean ± SD
    最小值(mg kg−1
    Min
    最大值(mg kg−1
    Max
    PB*PS**
    Cd 工业源 1.0811 ± 0.3626 a 0.6683 2.0256 11.91 ± 2.91 2.80 ± 1.22
    农业源 0.6092 ± 0.2382 b 0.1234 1.0690 5.09 ± 2.30 1.33 ± 0.53
    Pb 工业源 90.80 ± 37.41 a 42.30 166.91 3.36 ± 1.46 0.94 ± 0.43
    农业源 50.17 ± 16.10 b 22.60 72.46 1.82 ± 0.60 0.45 ± 0.17
    Cu 工业源 40.52 ± 14.01 a 24.43 75.15 2.00 ± 0.67 0.81 ± 0.28
    农业源 29.92 ± 7.63 b 22.38 52.11 1.37 ± 0.40 0.50 ± 0.19
    Zn 工业源 119.15 ± 21.89 a 65.07 169.86 1.77 ± 0.32 0.60 ± 0.10
    农业源 91.68 ± 33.51 b 58.35 192.6 1.46 ± 0.52 0.44 ± 0.19
      注:PB*为以土壤背景值为参考的污染指数;PS**为以农用地土壤污染风险管控标准为参考的污染指数
    下载: 导出CSV

    表  4   水稻根系和籽粒中重金属含量

    Table  4   Heavy metal contents in rice roots and seeds

    污染源
    Pollution source
    根(mg kg−1
    Root
    籽粒(mg kg−1
    Seed
    Pi范围
    Range of soil pollution index
    Cd 工业源 1.4833 ± 0.3084 a 0.1819 ± 0.0484 a 0.53 ~ 1.25
    农业源 0.5056 ± 0.1263 b 0.1031 ± 0.0218 b 0.29 ~ 0.69
    Pb 工业源 26.19 ± 5.22 a 0.4566 ± 0.1121 a 1.32 ~ 3.34
    农业源 10.10 ± 5.41 b 0.1148 ± 0.0361 b 0.28 ~ 0.89
    Cu 工业源 15.23 ± 2.59 a 0.6330 ± 0.1723 a 0.037 ~ 0.100
    农业源 6.239 ± 1.13 b 0.2323 ± 0.0848 b 0.012 ~ 0.041
    Zn 工业源 13.800 ± 3.693 a 1.8457 ± 0.4915 a 0.026 ~ 0.059
    农业源 10.593 ± 3.358 a 1.6882 ± 0.5347 a 0.020 ~ 0.059
      注:P为水稻籽粒中的重金属含量与国家食品卫生标准值之比
    下载: 导出CSV
  • [1]

    Wang S, Cai L M, Wen H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China[J]. Science of The Total Environment, 2019, 655: 92 − 101. doi: 10.1016/j.scitotenv.2018.11.244

    [2]

    Zeng T, Khaliq M A, Li H L, et al. Assessment of Cd availability in rice cultivation(Oryza sativa): Effects of a amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110490. doi: 10.1016/j.ecoenv.2020.110490

    [3] 林承奇, 蔡宇豪, 胡恭任, 等. 闽西南土壤-水稻系统重金属生物可给性及健康风险[J]. 环境科学, 2021, (1): 359 − 367.
    [4]

    Zhang W, Lin K F, Zhou J, et al. Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur[J]. Environmental Toxicology and Pharmacology, 2014, 37: 348 − 353. doi: 10.1016/j.etap.2013.12.006

    [5] 吴 迪, 杨秀珍, 李存雄, 等. 贵州典型铅锌矿区水稻土壤和水稻中重金属含量及健康风险评价[J]. 农业环境科学学报, 2013, (10): 1992 − 1998. doi: 10.11654/jaes.2013.10.013
    [6] 许 超, 夏北成, 秦建桥, 等. 广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价[J]. 农业环境科学学报, 2007, (S2): 549 − 553.
    [7]

    Chen T, Chang Q R, Liu J, et al. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China[J]. Science of The Total Environment, 2016, 565: 155 − 164. doi: 10.1016/j.scitotenv.2016.04.163

    [8]

    Ning C C, Gao P D, Wang B Q, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content[J]. Journal of Integrative Agriculture, 2017, 16(8): 1819 − 1831. doi: 10.1016/S2095-3119(16)61476-4

    [9]

    Qin L, Xing S, Hu A Y, et al. Characteristics of toxic metal accumulation in farmland in relation to long-term chicken manure application: A case study in the Yangtze River Delta Region, China[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(3): 279 − 284. doi: 10.1007/s00128-014-1204-y

    [10]

    João Antônio Montibeller F S, Sobrinho do A S, Garcia A C, et al. Mitigation of heavy metal contamination in soil via successive pig slurry application[J]. Soil & Sediment Contamination, 2017, 26(7-8): 675 − 690.

    [11]

    Rafique N, Tarip S R. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields[J] Environmental Monitoring and Assessment, 2016, 188(5): 309.

    [12] 马宏宏, 彭 敏, 郭 飞, 等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学. https://doi.org/10.13227/j.hjkx.202007138.
    [13] 章明奎, 方利平, 周 翠. 污染土壤重金属的生物有效性和移动性评价: 四种方法比较[J]. 应用生态学报, 2006, 17(8): 1501 − 1504. doi: 10.3321/j.issn:1001-9332.2006.08.028
    [14]

    Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J] Journal of Hazardous Materials, 2020, 400: 123289.

    [15] 曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017, 36(6): 222 − 232.
    [16] 郑顺安, 陈 春, 郑向群, 等. 污染土壤不同粒级团聚体中铅的富集特征及其与叶类蔬菜铅吸收之间的相关性[J]. 农业环境科学学报, 2013, 32(3): 556 − 564.
    [17]

    Liu G G, Wang J, Zhang E X, et al. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China[J]. Environmental Science and Pollution Research, 2016, 23(9): 8709 − 8720.

    [18]

    Huang L, Li W C, Tam N F Y, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice[J]. Journal of Environmental Sciences, 2019, (1): 296 − 306.

    [19] 叶家瑜, 李锡坤, 刘 棕, 等. DD 2005—03生态地球化学评价样品分析技术要求(试行)[S]. 中国地质调查局, 2005.
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [21] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2002.
    [22]

    McGrath Stephen P, Cunliffe Caroline H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges[J]. Journal of the Science of Food and Agriculture, 1985, 36(9): 794 − 798. doi: 10.1002/jsfa.2740360906

    [23]

    Chen H P, Yang X P, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China[J]. Science of The Total Environment, 2018, 639: 271 − 277. doi: 10.1016/j.scitotenv.2018.05.050

    [24] 吴淑岱. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [25]

    Zhao K L, Liu X M, Zhang W W, et al. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale[J]. Journal of Soils and Sediments, 2011, 11(7): 1165 − 1177. doi: 10.1007/s11368-011-0408-6

    [26]

    Mohamed I, Ahamadou B, Li M, et al. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials[J]. Journal of Soils and Sediments, 2010, 10(6): 973 − 982. doi: 10.1007/s11368-010-0199-1

    [27]

    Zang F, Wang S L, Nan Z R et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China[J]. Geoderma, 2017, 305: 188 − 196. doi: 10.1016/j.geoderma.2017.06.008

    [28] 王洋洋, 李方方, 王笑阳, 等. 铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J]. 环境科学, 2019, 40(1): 437 − 444.
    [29] 周亚龙, 杨志斌, 王乔林, 等. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析[J/OL]. 环境科学: 1-20[2021-01-13]. https://doi.org/10.13227/j.hjkx.202007253.
    [30] 何梦媛, 董同喜, 茹淑华, 等. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J]. 环境科学, 2017, 38(4): 1576 − 1586.
    [31] 茹淑华, 徐万强, 侯利敏, 等. 连续施用有机肥后重金属在土壤-作物系统中的积累与迁移特征[J]. 生态环境学报, 2019, 28(10): 2070 − 2078.
    [32] 朱建春, 李荣华, 张增强, 等. 陕西规模化猪场猪粪与饲料重金属含量研究[J]. 农业机械学报, 2013, 44(11): 98 − 104. doi: 10.6041/j.issn.1000-1298.2013.11.018
    [33] 刘树堂, 赵永厚, 孙玉林, 等. 25年长期定位施肥对非石灰性潮土重金属状况的影响[J]. 水土保持学报, 2005, (1): 164 − 167. doi: 10.3321/j.issn:1009-2242.2005.01.041
    [34] 李宇庆, 陈 玲, 仇雁翎, 等. 上海化学工业区土壤重金属元素形态分析[J]. 生态环境, 2004, (2): 154 − 155.
    [35] 刘 玥, 乔 栋, 牛 宏, 等. 煤矿周边土壤重金属形态特征及迁移转化规律[J]. 中国煤炭, 2016, 42(3): 115 − 120. doi: 10.3969/j.issn.1006-530X.2016.03.030
    [36] 蒋煜峰, 胡雪菲, Uwamungu J Y, 等. 典型工业区土壤重金属污染特征及生物有效性研究[J]. 环境科学与技术, 2015, 38(7): 58 − 64.
    [37] 李晓涵, 吴永贵, 刘明凤, 等. 模拟酸雨对铅锌冶炼废渣重金属释放及生物毒性的影响[J]. 农业环境科学学报, 2020, 39(11): 2504 − 2514. doi: 10.11654/jaes.2020-0440
    [38] 雷良奇, 莫斌吉, 陈斯耐, 等. 珊瑚钨锡矿硅质尾矿中Cd、As、Zn、F富集迁移及环境污染[J]. 地球与环境, 2018, 46(4): 373 − 380.
    [39]

    Formentini T A, Mallmann F J K, Pinheiro A, et al. Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application[J]. Science of the Total Environment, 2015, 536: 831 − 839. doi: 10.1016/j.scitotenv.2015.07.110

    [40]

    Abdelrady A, Bachwenkizi J, Sharma S, et al. The fate of heavy metals during bank filtration: Effect of dissolved organic matter[J] Journal of Water Process Engineering, 2020, 38: 101563

    [41] 黄兴洁, 吴 昊, 李婉秋, 等. 猪粪有机肥中溶解有机组分对小白菜生长及Cu吸收的影响[J/OL]. 生态与农村环境学报: 1-6[2021-01-13]. https://doi.org/10.19741/j.issn.1673-4831.2020.0001.
    [42] 郑 堃, 任宗玲, 覃小泉, 等. 韶关工矿区水稻土和稻米中重金属污染状况及风险评价[J]. 农业环境科学学报, 2018, 37(5): 915 − 925. doi: 10.11654/jaes.2018-0224
    [43] 季梦兰, 严 俊, 林 华, 等. 有色金属矿区农田土壤-水稻镉积累状况及其响应关系研究[J]. 生态环境学报, 2016, 25(6): 1039 − 1046.
    [44] 周 振. 土壤-辣椒体系铅生物有效性预测模型初探[D]. 浙江: 浙江大学, 2019.
    [45] 王 攀, 朱湾湾, 樊 瑾, 等. 宁夏燃煤电厂周围降水降尘中硫氮沉降特征研究[J]. 生态环境学报, 2020, 29(6): 1189 − 1197.
    [46]

    Zeng F R, Ali S, Zhang H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159: 84 − 91. doi: 10.1016/j.envpol.2010.09.019

    [47]

    Shan H, Su S M, Liu R L, et al. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure[J]. Environmental Science and Pollution Research, 2016, 23(15): 15208 − 15217. doi: 10.1007/s11356-016-6464-0

    [48] 李非里, 刘丛强, 宋照亮. 土壤中重金属形态的化学分析综述[J]. 中国环境监测, 2005, (4): 21 − 27. doi: 10.3969/j.issn.1002-6002.2005.04.007
图(3)  /  表(4)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  156
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-27
  • 修回日期:  2021-09-26
  • 网络出版日期:  2022-02-11
  • 发布日期:  2022-02-05

目录

    /

    返回文章
    返回
    Baidu
    map