Impacts of Synergistic Mulching of Straw and Milk Vetch on Soil Nutrients, Enzyme Activities and Wheat Yield in Upland of Southwest China
-
摘要: 研究秸秆覆盖、紫云英覆盖及两者协同覆盖对西南旱地土壤养分、酶活性以及小麦产量的影响,对于维持农田土壤养分平衡、优化西南旱地保护性耕作措施具有重要的理论和指导意义。以“小麦/玉米/大豆”旱三熟种植模式下的小麦农田为研究对象开展田间试验,共设置4个处理:玉米秸秆覆盖(S)、紫云英覆盖(A)、玉米秸秆 + 和紫云英协同覆盖(S + A)、对照(CK)。结果表明,与CK处理相比,S、S + A处理对土壤有机碳、全氮、全磷、速效钾、缓效钾含量均有显著促进作用;A处理对土壤有机碳、全氮、碱解氮影响明显,但是对磷、钾的促进效果不明显。S +土壤酶活性与土壤养分之间存在密切关系, A处理能够显著提高根际和非根际土壤的蔗糖酶、蛋白酶、脲酶、淀粉酶和酸性磷酸酶活性,S处理和A处理对土壤酶活性的促进效果不如S + A处理。与CK处理相比,S、A、S + A处理的小麦增产率分别为5.14%、8.79%、13.34%,其中,S + A处理的小麦增产率最高。秸秆和紫云英协同覆盖能够显著提高土壤养分含量和酶活性、促进小麦增产,有利于在保护农田生态环境的同时提高农业生产效益,可以作为有效的西南旱地保护性耕作措施推广使用。Abstract: Studying the effects of straw mulching, milk vetch mulching and their synergistic mulching on wheat yield, soil nutrient and enzyme activity in the rain-fed farmland in southwest China is of great theoretical and production guiding significance for maintaining the balance of soil nutrients and optimizing the conservation tillage measures in the rain-fed farmland of southwest China. In this study, the wheat field with a "wheat/ maize/ bean" triple cropping system was taken as the research object, with 4 treatments inculding maize straw mulching (S), milk vetch mulching (A), synergistic mulching of maize straw and milk vetch (S + A), and control (CK). The results showed that compared with the CK treatment, the treatments of S and S + A significantly promoted the contents of soil total organic carbon, total nitrogen, total phosphorus, rapidly and slowly available potassium. Moreover, the A treatment obviously affected the total organic carbon, total nitrogen and alkali-hydrolyzable nitrogen in soil, while the promotion effect of it on phosphorus and potassium in soil was not significant. There was a close relationship between soil enzyme activities and soil nutrients. Meanwhile, the S + A treatment could significantly improve the activities of sucrase, protease, urease, amylase and acid phosphatase in the rhizosphere and non-rhizosphere soil, but the effects of the S and A treatments on soil enzyme activities were less than that of the S + A treatment. Compared with the CK treatment, the wheat yield increase rates of the S, A and S + A treatments were respectively 5.14%, 8.79% and 13.34%, in which the S + A treatment had the highest yield increase rate. Generally, synergistic mulching of maize straw and milk vetch could significantly increase soil nutrient content and enzyme activity, promoting the wheat yield, in the mean time of help to improve agricultural production efficiency and protecting farmland ecological environment. Consequently, synergistic mulching of straw and milk vetch could be popularized as an effective conservation tillage measure in the rain-fed farmland of southwest China.
-
Keywords:
- Wheat /
- Straw mulching /
- Milk vetch mulching /
- Soil nutrients /
- Soil enzyme activity
-
表 1 不同处理对小麦土壤养分的影响
Table 1 Impacts of different treatments on soil nutrients in the wheat field
土区
Soil
area处理
Treatment有机碳
Organic
carbon
(g kg−1)全氮
Total
nitrogen
(g kg−1)碱解氮
Alkali-hydrolyzable
nitrogen
(mg kg−1)全磷
Total
phosphorus
(mg kg−1)有效磷
Available
phosphorus
(mg kg−1)缓效钾
Slowly available
potassium
(mg kg−1)速效钾
Rapidly available
potassium
(mg kg−1)根际 S 11.48 ± 0.33 b 1.17 ± 0.04 b 107.50 ± 2.79 b 0.81 ± 0.03 b 46.31 ± 1.81 a 500.31 ± 7.17 b 264.73 ± 2.15 b A 11.79 ± 0.29 b 1.21 ± 0.01 ab 103.55 ± 2.55 b 0.73 ± 0.01 c 41.79 ± 0.54 b 459.09 ± 1.17 c 226.56 ± 1.58 c S + A 12.97 ± 0.56 a 1.22 ± 0.00 a 117.91 ± 2.86 a 0.88 ± 0.02 a 44.52 ± 0.95 a 540.45 ± 9.81 a 293.20 ± 2.21 a CK 10.71 ± 0.30 c 0.98 ± 0.02 c 92.77 ± 0.36 c 0.70 ± 0.02 c 36.12 ± 1.90 c 379.19 ± 27.81 d 231.96 ± 5.60 c 非根际 S 12.56 ± 0.12 b 1.10 ± 0.03 c 99.45 ± 2.19 b 0.71 ± 0.02b c 44.52 ± 1.22 b 525.16 ± 16.83 a 227.27 ± 6.71 b A 10.53 ± 0.31 c 1.18 ± 0.03 b 104.90 ± 2.10 a 0.74 ± 0.01 b 38.49 ± 1.35 c 477.48 ± 11.01 b 174.86 ± 6.39 d S + A 13.35 ± 0.30 a 1.27 ± 0.04 a 108.83 ± 2.87 a 0.76 ± 0.02 a 47.03 ± 0.76 a 426.62 ± 5.68 c 301.56 ± 8.77 a CK 9.99 ± 0.33 d 0.90 ± 0.06 d 90.68 ± 0.26 c 0.70 ± 0.01 c 28.72 ± 1.93 d 341.64 ± 29.35 d 205.89 ± 5.76 c 注:S表示玉米秸秆覆盖,A表示紫云英秸秆覆盖,S + A表示玉米秸秆 + 紫云英覆盖,CK表示对照;同列不同小写字母表示同一土区中差异达0.05显著水平,数据表示平均值 ± 标准误。下同。 表 2 土壤养分与酶活性的相关系数
Table 2 Correlation coefficient between soil nutrients and enzyme activities
指标
Index有机碳
Organic carbon全氮
Total nitrogen碱解氮
Alkali-hydrolyzed nitrogen全磷
Total phosphorus速效磷
Available phosphorus速效钾
Slowly available potassium缓效钾
Rapidly available potassium蔗糖酶 0.855** 0.395 0.356 0.195 0.502 0.248 0.648 蛋白酶 0.741* 0.534 0.782* 0.797* 0.599 0.602 0.702 脲酶 0.494 0.646 0.849** 0.766* 0.398 0.62 0.391 淀粉酶 0.841** 0.946** 0.812* 0.536 0.794* 0.763* 0.513 酸性磷酸酶 0.595 0.663 0.689 0.651 0.816* 0.144 0.829* 注:样本数 = 8;*,**分别表示0.05,0.01显著水平。 -
[1] Godfray H C J, Beddington J R, Crute I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812 − 818.
[2] 赵广才. 中国小麦种植区划研究(一)[J]. 麦类作物学报, 2010, 30(5): 886 − 895. doi: 10.7606/j.issn.1009-1041.2010.05.019 [3] 孙 爽. 中国不同区域冬小麦产量潜力及资源利用效率研究[D]. 北京: 中国农业大学, 2018. [4] 王龙昌, 邹聪明, 张云兰, 等. 西南“旱三熟”地区不同保护性耕作措施对农田土壤生态效应及生产效益的影响[J]. 作物学报, 2013, 39(10): 1880 − 1890. [5] 任景明, 喻元秀, 王如松. 我国农业环境问题及其防治对策[J]. 生态学杂志, 2009, 28(7): 1399 − 1405. [6] 曹林奎. 农业生态学原理[M]. 上海: 上海交通大学出版社, 2011. [7] Wang X, Feng A, Wang Q, et al. Spatial variability of the nutrient balance and related NPSP risk analysis for agro-ecosystems in China in 2010[J]. Agriculture, Ecosystems & Environment, 2014, 193: 42 − 52.
[8] 徐 娜, 党廷辉, 刘文兆. 黄土高塬沟壑区农田土壤养分与作物产量变化的长期监测[J]. 植物营养与肥料学报, 2016, 22(5): 1240 − 1248. doi: 10.11674/zwyf.15229 [9] 李 锦, 田霄鸿, 王少霞, 等. 秸秆还田条件下减量施氮对作物产量及土壤碳氮含量的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(1): 137 − 143. [10] 程 曼, 解文艳, 杨振兴, 等. 黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(10): 1528 − 1536. [11] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1 − 21. doi: 10.11674/zwyf.17348 [12] Carvalho A M De, Marchao R L, Souza K W, et al. Soil fertility status, carbon and nitrogen stocks under cover crops and tillage regimes[J]. Revista Ciencia Agronomica, 2014, 45(5): 914 − 921.
[13] Jeon W T, Choi B, Abd El-Azeem S, et al. Effect of different seeding methods on green manure biomass, soil properties and rice yield in rice-based cropping systems[J]. African Journal of Biotechnology, 2011, 10: 2024 − 2031.
[14] Akhtar K, Wang W, Khan A, et al. Straw mulching with fertilizer nitrogen: An approach for improving crop yield, soil nutrients and enzyme activities[J]. Soil Use and Management, 2019, 35(3): 526 − 535. doi: 10.1111/sum.12478
[15] 沈学善, 屈会娟, 李金才, 等. 玉米秸秆还田和耕作方式对小麦养分积累与转运的影响[J]. 西北植物学报, 2012, 32(1): 143 − 149. doi: 10.3969/j.issn.1000-4025.2012.01.023 [16] Zhou C H, Zhao Z K, Pan X H, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system[J]. Rice Science, 2016, 23(3): 132 − 143. doi: 10.1016/j.rsci.2015.11.003
[17] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响[J]. 生态学杂志, 2019, 38(1): 129 − 135. [18] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008. [19] 鲍士旦. 土壤农化分析. 第3版[M]. 北京: 中国农业出版社, 2000. [20] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [21] Wang B, Shen X, Chen S, et al. Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: A comprehensive evaluation[J]. Ecological Indicators, 2018, 93: 998 − 1004. doi: 10.1016/j.ecolind.2018.05.081
[22] Schjoerring J K, Cakmak I, White P J. Plant nutrition and soil fertility: Synergies for acquiring global green growth and sustainable development[J]. Plant and Soil, 2019, 434(1): 1 − 6.
[23] Zhao S C, Li K J, Zhou W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82 − 88.
[24] 薛兰兰, Shakeel A A, 刘晓建, 等. 秸秆覆盖对土壤养分和油菜生长发育的影响[J]. 农机化研究, 2011, 33(2): 110 − 115. doi: 10.3969/j.issn.1003-188X.2011.02.029 [25] 王丽宏, 胡跃高, 杨光立, 等. 南方冬季覆盖作物的碳蓄积及其对水稻产量的影响[J]. 生态环境, 2006, (3): 616 − 619. [26] 陈云峰, 邹贤斌, 罗时明, 等. 连年翻压紫云英对早稻田土壤性质及酶活性动态的影响[J]. 中国土壤与肥料, 2019, (02): 24 − 29. [27] 李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5): 1310 − 1318. doi: 10.11674/zwyf.15423 [28] 汤文光, 肖小平, 唐海明, 等. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响[J]. 应用生态学报, 2015, 26(1): 168 − 176. [29] 董艳红, 王火焰, 周健民, 等. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2): 225 − 231. [30] 刘玮斌, 田文博, 陈 龙, 等. 不同秸秆还田方式对土壤酶活性和玉米产量的影响[J]. 中国土壤与肥料, 2019, (5): 25 − 29. doi: 10.11838/sfsc.1673-6257.18482 [31] 孙敬克, 李友军, 黄 明, 等. 不同耕作方式对冬小麦生育期根际土及非根际土土壤酶活性的影响[J]. 河南科技大学学报(自然科学版), 2007, (2): 59 − 62+2. [32] 李 硕, 把余玲, 李有兵, 等. 添加作物秸秆对土壤有机碳组分和酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 153 − 161. [33] 张英英, 蔡立群, 张仁陟, 等. 不同耕作措施对春小麦生育期内土壤酶活性的影响[J]. 干旱区资源与环境, 2016, 30(10): 88 − 92. [34] Tejada M, Benítez C. Effects of crushed maize straw residues on soil biological properties and soil restoration[J]. Land Degradation & Development, 2014, 25(5): 501 − 509.
[35] 杨 璐, 曾闹华, 白金顺, 等. 紫云英季土壤固氮微生物对外源碳氮投入的响应[J]. 中国农业科学, 2020, 53(1): 105 − 116. [36] 肖嫩群, 沈宝明, 谭周进, 等. 紫云英还田方式对烟田土壤微生物及酶的影响[J]. 核农学报, 2010, 24(1): 130 − 135. [37] 叶元生, 黄彩霞. 西北旱地秸秆覆盖对小麦产量及农田生态效应的影响[J]. 农业工程, 2020, 10(8): 106 − 113. [38] 路怡青, 朱安宁, 张佳宝, 等. 免耕和秸秆还田对土壤酶活性和微生物群落的影响[J]. 土壤通报, 2014, 45(1): 85 − 90. [39] Bandick A K, Dick R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 1999, 31(11): 1471 − 1479. doi: 10.1016/S0038-0717(99)00051-6
[40] 张万恒, 张恒嘉, 王泽义, 等. 秸秆覆盖方式对西北旱作马铃薯产量效益的影响[J]. 农业工程, 2018, 8(12): 85 − 88. doi: 10.3969/j.issn.2095-1795.2018.12.024 [41] 刘云鹏, 申卫博, 张社奇, 等. 黄河中游湿地土壤养分与酶活性特征及相关性研究[J]. 草地学报, 2013, 21(3): 474 − 478. [42] 李其昀, 张 萍, 贾晓东, 等. 秸秆覆盖对冬小麦的影响[J]. 农机化研究, 2009, 31(3): 137 − 140+146. doi: 10.3969/j.issn.1003-188X.2009.03.044 [43] 张 春, 杨万忠, 韩清芳, 等. 夏闲期种植不同绿肥作物对土壤养分及冬小麦产量的影响[J]. 干旱地区农业研究, 2014, 32(2): 66 − 72. doi: 10.7606/j.issn.1000-7601.2014.02.011 [44] 王改玲, 李立科, 郝明德, 等. 长期施肥及不同施肥条件下秸秆覆盖、灌水对土壤酶和养分的影响[J]. 核农学报, 2012, 26(1): 129 − 134+27.