Effects of Pig Manure Application on Copper Fractions in Different Soils and Copper Accumulation in Chinese Cabbage
-
摘要:目的 探讨猪粪中铜(Cu)的输入对土壤中Cu的赋存和生物有效性的影响。方法 将1%和3%的腐熟猪粪(干猪粪∶秸秆 = 10∶1)添加到黄褐土、红壤、黑土、褐土中,分别老化0、1、2、3、5个月后,进行小白菜盆栽实验。结果 与对照相比,施用猪粪使黄褐土、红壤、黑土和褐土土壤铜(Cu)全量分别显著增加了20.23% ~ 50.43%、79.87% ~ 142.6%、52.41% ~ 76.43%和41.14% ~ 92.24%。四种土壤中水溶态(F1)、碳酸盐结合态(F3)Cu占比均增加,施用3%猪粪的红壤未老化处理中F1-Cu和黄褐土未老化处理中F3-Cu增幅最大,分别达4.55%和16.47%。土壤铁锰氧化态(F5)、有机结合态(F6)Cu占比增加,残渣态(F7)占比降低。土壤有效态Cu的占比与猪粪老化时间呈显著负相关,3%猪粪老化5个月处理的黄褐土、黑土和褐土土壤有效态Cu占比分别降低12.85%、4.11%和3.68%,而红壤有效态Cu占比随老化时间变化不显著。在黄褐土中,腐殖酸结合态(F4)Cu的占比随猪粪老化时间的延长逐渐增加。施用猪粪显著增加小白菜对Cu的吸收,其中红壤的增幅最大,根系与地上部Cu含量分别显著提高244.5%和381.7%,地上部Cu含量为国家食品中污染物限量标准的1.44 ~ 2.56倍。逐步回归分析方程表明小白菜根系Cu的含量与土壤pH、粘粒及腐殖酸结合态(F4)含量呈显著负相关,与猪粪Cu输入量、土壤可溶性有机质含量呈显著正相关。结论 猪粪的Cu输入显著提高土壤和小白菜的Cu 含量。土壤Cu的生物有效性不仅受土壤性质的影响,猪粪本身及在土壤中分解产生的腐殖酸和水溶性有机质对Cu的有效性也有较大的影响。通过比较不同的土壤类型,施用含Cu猪粪在红壤-作物系统中存在相对较高的重金属污染风险。Abstract:Objective The concentration of heavy metals in pig manure and its impact on the bioavailability of heavy metals in soil has long been a worldwide concern. The manure with copper (Cu) will be added to soils and the Cu fractions will be determined in soils and Chinese cabbage, in order to make sure the Cu accumulation and bioavailability.Methods In this study, 1% and 3% of rotten pig manure (dry pig manure∶straw = 10∶1) were added to yellow cinnamon soil, red soil, black soil and cinnamon soil. After aging for 0, 1, 2, 3 and 5 months respectively, a pot experiment of Chinese cabbage was carried out.Results The results showed that the total amount of Cu in yellow cinnamon soil, red soil, black soil and cinnamon soil increased significantly by 20.23% - 50.43%, 79.87% - 142.6%, 52.41% - 76.43% and 41.14% - 92.24% respectively. In four soils, the proportions of water-soluble Cu (F1) and carbonate-bounded form Cu (F3) increased and the increase of F1-Cu in RS-0 with 3% pig manure and F2-Cu in YCS-0 were the most significant, which was 4.55% and 16.47% respectively. The proportion of soil iron manganese oxidation form (F5) and organic-bound form (F6) Cu increased, while the concentration of residual (F7) decreased. The proportion of available Cu in soil was significantly negatively correlated with the aging time of pig manure. The proportion of available Cu in yellow cinnamon soil, black soil and cinnamon soil treated with 3% pig manure for 5 months decreased by 12.85%, 4.11% and 3.68% respectively, while that in red soil did not change significantly with the aging time. In yellow cinnamon soil, the proportion of humic acid-bound form (F4) Cu gradually increased with the extension of pig manure aging time. The application of pig manure significantly increased the Cu accumulation in cabbage, and the most significant increase was observed in red soil. The Cu contents in root and shoot increased significantly by 244.5% and 381.7% respectively, and the Cu content in shoot was 1.44-2.56 times higher than the critical value of the national food pollutant limit standard. According to the results of stepwise regression analysis equation, the contents of Cu in Chinese cabbage root system were significantly negatively correlated with soil pH, clay and F4-Cu content, but significantly positively correlated with pig manure Cu input and soil dissolve organic matter.Conclusion The Cu input from pig manure significantly increases the Cu contents in soil and Chinese cabbage. The bioavailability of soil Cu is not only affected by soil properties, but also affected by pig manure itself, humic acid and dissolve organic matter in soil. By comparing different soil types, it can be concluded that the application of pig manure containing Cu stands for a relatively high risk of heavy metal pollution in the soil-crop system, especially in red soil.
-
Keywords:
- Pig manure /
- Aging /
- Copper /
- Proportion of fractionation /
- Bioavailability
-
表 1 供试猪粪基本理化性质
Table 1 Basic physical-chemical properties and heavy metal content of experimental pig manure
pH 有机质(g kg−1)
Organic matter全氮(g kg−1)
Total nitrogen速效磷(g kg−1)
P2O5速效钾(g kg−1)
K2OCu
(mg kg−1)6.88 ± 0.03 70.34 ± 2.92 8.29 ± 0.31 6.86 ± 0.19 4.02 ± 0.22 499.3 ± 3.75 表 2 供试土壤基本理化性质
Table 2 Basic physical-chemical properties of experimental soils
性质
Property土壤类型
Soil type黄褐土
YCS红壤
RS黑土
BS褐土
CSpH 8.00 ± 0.02 4.27 ± 0.02 8.25 ± 0.05 8.43 ± 0.10 有机质 (g kg−1) 12.38 ± 0.89 9.31 ± 0.23 48.43 ± 1.87 23.77 ± 0.94 全氮 (g kg−1) 0.75 ± 0.003 0.37 ± 0.004 1.39 ± 0.004 1.18 ± 0.004 速效磷 (mg kg−1) 18.82 ± 0.61 9.80 ± 0.40 27.4 ± 3.41 16.62 ± 0.51 速效钾 (mg kg−1) 138.5 ± 6.36 94.50 ± 10.61 135.0 ± 14.14 208.0 ± 14.14 CEC (cmol kg−1) 11.87 ± 0.10 8.7 ± 0.35 18.7 ± 0.22 10.61 ± 0.08 DOM (mg kg−1) 100.5 ± 6.38 40.62 ± 2.72 163.6 ± 8.43 157.3 ± 9.77 粘粒含量 (%) 22.40 ± 0.33 28.20 ± 0.16 14.60 ± 0.16 12.60 ± 0.19 Cu (mg kg−1) 35.79 ± 2.37 18.23 ± 0.02 22.61 ± 1.28 21.78 ± 0.17 表 3 试验设计及不同土壤处理的命名
Table 3 Experimental design and coders of different soil treatments
培养时间(月)
Incubation (month)0 1 2 3 5 猪粪添加量(%)
Percentage of pig manure addition1 3 1 3 1 3 1 3 1 3 土壤类型 YCS YCS 0-1 YCS 0-3 YCS 1-1 YCS 1-3 YCS 2-1 YCS 2-3 YCS 3-1 YCS 3-3 YCS 5-1 YCS 5-3 RS RS 0-1 RS 0-3 RS 1-1 RS 1-3 RS 2-1 RS 2-3 RS 3-1 RS 3-3 RS 5-1 RS 5-3 BS BS 0-1 BS 0-3 BS 1-1 BS 1-3 BS 2-1 BS 2-3 BS 3-1 BS 3-3 BS 5-1 BS 5-3 CS CS 0-1 CS 0-3 CS 1-1 CS 1-3 CS 2-1 CS 2-3 CS 3-1 CS 3-3 CS 5-1 CS 5-3 表 4 施用3%猪粪有机肥土壤的有效态Cu占比与老化时间的线性回归模型
Table 4 Linear regression model between the proportion of available Cu in soil applied with 3% pig manure and aging time
土壤类型
Soil type方程表达式
Equation expressionR2 P YCS y = –2.373t + 24.29 0.832 < 0.01 RS y = −0.407t + 18.16 0.360 < 0.10 BS y = −0.743t + 7.796 0.898 < 0.01 CS y = −0.753t + 11.71 0.797 < 0.01 注:y为施用3%猪粪土壤的有效态Cu含量占比,t为猪粪的老化时间。P < 0.01的相关系数临界值为0.735,P < 0.05的相关系数临界值为0.602。 -
[1] 何梦媛, 董同喜, 茹淑华, 等. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J]. 环境科学, 2017, 38(4): 1576 − 1586. [2] Ma D, Yin L, Ju W, et al. Meta-analysis of green manure effects on soil properties and crop yield in northern China[J]. Field Crops Research, 2021, 266: 108 − 146.
[3] 阎波杰, 赵春江, 潘瑜春, 等. 大兴区农用地畜禽粪便氮负荷估算及污染风险评价[J]. 环境科学, 2010, 31(2): 437 − 443. [4] 刘 春, 刘晨阳, 王济民, 等. 我国畜禽粪便资源化利用现状与对策建议[J]. 中国农业资源与区划, 2021, 42(2): 35 − 43. [5] Untea A, Criste R, Panaite T, et al. Effect of the dietary oregano (Origanum vulgare) on Cu and Zn balance in weaned piglets[J]. Journal Of Trace Elements In Medicine And Biology, 2011, 25: S35 − S40. doi: 10.1016/j.jtemb.2010.10.011
[6] Zhang Q, Zou D, Zeng X, et al. Effect of the direct use of biomass in agricultural soil on heavy metals activation or immobilization?[J]. Environmental Pollution, 2021, 272: 115989. doi: 10.1016/j.envpol.2020.115989
[7] Hu Y A, Cheng H F, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International, 2017, 107: 111 − 130. doi: 10.1016/j.envint.2017.07.003
[8] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science Of the Total Environment, 2010, 408(5): 1069 − 1075. doi: 10.1016/j.scitotenv.2009.11.014
[9] 袁 凯, 熊苏雅, 梁 静, 等. 畜禽粪便中铜和锌污染现状及风险分析[J]. 农业环境科学学报, 2020, 39(8): 1837 − 1842. doi: 10.11654/jaes.2020-0142 [10] 贾武霞, 文 炯, 许望龙, 等. 我国部分城市畜禽粪便中重金属含量及形态分布[J]. 农业环境科学学报, 2016, 35(4): 764 − 773. doi: 10.11654/jaes.2016.04.022 [11] Zhao Y C, Yan Z B, Qin J H, et al. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China[J]. Environmental Science And Pollution Research, 2014, 21(12): 7586 − 7595. doi: 10.1007/s11356-014-2671-8
[12] Hu W Y, Wang H F, Dong L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach[J]. Environmental Pollution, 2018, 237: 650 − 661. doi: 10.1016/j.envpol.2018.02.070
[13] 王腾飞, 谭长银, 曹雪莹, 等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报, 2017, 36(2): 257 − 263. doi: 10.11654/jaes.2016-0986 [14] 王 美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466 − 480. doi: 10.11674/zwyf.2014.0224 [15] Tandy S, Healey J R, Nason M A, et al. Heavy metal fractionation during the co-composting of biosolids, deinking paper fibre and green waste[J]. Bioresource Technology, 2009, 100(18): 4220 − 4226. doi: 10.1016/j.biortech.2009.02.046
[16] Li Z, Liang Y, Hu H, et al. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety[J]. Environment international, 2021, 156: 106749. doi: 10.1016/j.envint.2021.106749
[17] 王开峰, 彭 娜, 王凯荣, 等. 长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J]. 水土保持学报, 2008, (1): 105 − 108. doi: 10.3321/j.issn:1009-2242.2008.01.023 [18] 李顺江, 李 鹏, 李新荣, 等. 不同肥源、施氮量对土壤-作物系统中铬、镉含量的影响[J]. 农业资源与环境学报, 2015, 32(3): 235 − 241. [19] Laurent C, Bravin M N, Crouzet O, et al. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination[J]. Science Of the Total Environment, 2020, 709: 135927. doi: 10.1016/j.scitotenv.2019.135927
[20] 宋文恩, 郭雪雁, 陈世宝, 等. 酸化方式对土壤中铜的形态及生物有效性的影响[J]. 农业环境科学学报, 2014, 33(12): 2343 − 2349. doi: 10.11654/jaes.2014.12.010 [21] Souza C D C B D, Amaral Sobrinho N M B D, Lima E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247: 291 − 298.
[22] 王怡雯, 许 浩, 茹淑华, 等. 有机肥连续施用对土壤剖面有机碳分布的影响及其与重金属的关系[J]. 生态学杂志, 2019, 38(05): 1500 − 1507. [23] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environmental Science & Technology, 2000, 34(20): 4259 − 4265.
[24] 刘 平, 王 辉, 董元华, 等. 有机肥施用对土壤铜形态的影响研究[J]. 土壤, 2013, 45(5): 910 − 917. [25] 莫 争, 王春霞, 陈 琴, 等. 重金属Cu Pb Zn Cr Cd在土壤中的形态分布和转化[J]. 农业环境保护, 2002, (1): 9 − 12. [26] 卢秉林, 王文丽, 李 娟, 等. 添加小麦秸秆对猪粪高温堆肥腐熟进程的影响[J]. 环境工程学报, 2010, 4(4): 926 − 930. [27] 鲍士旦. 土壤农化分析. 3版[M]. 土壤农化分析. 3版, 2000. [28] Cao F, Kong L, Yang L, et al. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China[J]. Environmental Science & Pollution Research, 2015, 22(17): 1 − 10.
[29] 熊采华. 制修订生态地球化学评价样品分析技术规范[M]. [30] 马荣辉, 朱 蕊, 宗玉统, 等. 猪粪对黑土-水稻系统中铜的化学形态、生物积累和有效性的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 108 − 118. [31] 赵 婷, 束良佐, 于红梅, 等. 长期施肥对砂姜黑土重金属形态特征的影响[J]. 安徽农业大学学报, 2013, 40(5): 855 − 859. [32] Lock K, Janssen C R: Influence of aging on metal availability in soils, Ware G W, editor, Reviews Of Environmental Contamination And Toxicology, Vol 178, 2003: 1-21.
[33] Mclaughlin M J. Adelaide Research and Scholarship: Ageing of Metals in Soils Changes Bioavailability[J]. International Council on Metals and the Environment, 2001.
[34] 张 璠, 赵玉杰, 马秀兰, 等. 基于DGT技术分析土壤重金属Cd、Ni的老化特征[J]. 农业环境科学学报, 2019, 38(11): 2487 − 2495. doi: 10.11654/jaes.2019-0196 [35] 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31 (10): 1669-1676. [36] Souza C D C B D, Sobrinho N M B D A, Lima E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247(Oct.1): 291 − 298.
[37] 颜蒙蒙, 贾武霞, 苏世鸣, 等. 猪粪中铜、锌与等量水溶性盐对两种叶类蔬菜的植物有效性比较[J]. 农业环境科学学报, 2018, 37(2): 223 − 231. doi: 10.11654/jaes.2017-1052 [38] Chen G, Shah K J, Shi L, et al. Red soil amelioration and heavy metal immobilization by a multi-element mineral amendment: Performance and mechanisms[J]. Environmental Pollution, 2019, 254 (Pt A): 112964.
[39] Shah K J, Pan S-Y, Shukla A D, et al. Mechanism of organic pollutants sorption from aqueous solution by cationic tunable organoclays[J]. Journal of Colloid And Interface Science, 2018, 529: 90 − 99. doi: 10.1016/j.jcis.2018.05.094
[40] Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal Of Hazardous Materials, 2020: 400.
[41] 景丽洁, 王 敏. 不同类型土壤对重金属的吸附特性[J]. 生态环境, 2008, (1): 245 − 248. [42] Formentini T A, Mallmann F J K, Pinheiro A, et al. Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application[J]. Science of the Total Environment, 2015, 536(dec.1): 831 − 839.
[43] Paradelo R, Cambier P, Jara-Miranda A, et al. Mobility of Cu and Zn in Soil Amended with Composts at Different Degrees of Maturity[J]. Waste And Biomass Valorization, 2017, 8(3): 633 − 643. doi: 10.1007/s12649-016-9641-y
[44] 黄兴洁, 吴 昊, 李婉秋, 等. 猪粪有机肥中可溶性有机组分对小白菜生长及Cu吸收的影响[J]. 生态与农村环境学报, 2021, 37(1): 80 − 85. [45] 郭 微, 戴九兰, 王仁卿. 溶解性有机质影响土壤吸附重金属的研究进展[J]. 土壤通报, 2012, 43(3): 761 − 768.