Effects of Decomposed Straw Added Iron on Phosphorus Factions and Availability in Lime Concretion Black Soil and Fluvo-aquic Soil
-
摘要:目的 外源有机物输入对土壤磷素转化有重要影响,通过研究两种石灰性土壤(砂姜黑土和潮土)磷素有效性及磷形态对不同铁氧化物与秸秆混合腐熟物施用的响应特征,为含铁秸秆腐熟物的合理农用提供科学依据。方法 采用土培试验,设置空白对照(CK)、施秸秆腐熟物(S)、施含水铁矿秸秆腐熟物(SF)、施含针铁矿秸秆腐熟物(SG)和施含赤铁矿秸秆腐熟物(SH)5个处理,分析土壤磷有效性和形态变化及其与土壤性质的关系。结果 施用秸秆腐熟物均能显著提高两种土壤有效磷含量(P < 0.05),培养60 d后,两种土壤有效磷含量分别增加10.2% ~ 14.8%和24.7% ~ 35.0%,秸秆腐熟物处理对砂姜黑土和潮土有效磷提升效果高低顺序分别依次为S > SG > SH > SF和SF > S > SG > SH。施用秸秆腐熟物,砂姜黑土活性磷库和中稳性磷库相对含量增加,而稳定性磷库相对含量降低;培养60 d后,SG处理活性形态磷累积量显著高于其他处理(P < 0.05),较CK增加19.8%。潮土活性磷库相对含量增加,而中稳性磷库(除SG处理外)和稳定性磷库(除S和SH处理外)相对含量降低;培养60 d后,SF处理活性形态磷累积量显著高于其他处理(P < 0.05),较CK增加11.4%。相关性分析和冗余分析表明,两种土壤有效磷含量与土壤有机质含量显著正相关,土壤pH是影响砂姜黑土磷素组分变化的显著因子,土壤碱性磷酸酶活性是影响潮土磷素组分变化的显著因子。结论 综上,施用秸秆腐熟物均可促进砂姜黑土和潮土中非活性磷向活性磷转化,进而显著提升磷有效性,砂姜黑土中施用含针铁矿秸秆腐熟物效果较好,而潮土中施用含水铁矿秸秆腐熟物效果较好。Abstract:Objective The transformation of soil phosphorus is closely related to exogenous organic matter inputs. An indoor soil culture experiment was conducted to study the effectiveness and fractionation of phosphorus in response to the application of co-compost of straw with different iron oxides in two calcareous soils (lime concretion black soil and fluvo-aquic soil), which will provide a scientific basis for the rational agricultural utilization of iron-contained decomposed straw.Method There were five treatments: blank control (CK), decomposed straw (S), decomposed straw + ferrihydrite (SF), decomposed straw + goethite (SG) and decomposed straw + hematite (SH). The transformations of different phosphorus fractions and their relationship with soil physicochemical properties were analyzed to evaluate the effects of the application of the decomposed straw with different iron compounds on phosphorus effectiveness in lime concretion black soil and fluvo-aquic soil.Result The results showed that ① the application of decomposed straw could significantly increase the available phosphorus contents in two soils (P < 0.05). After 60 days of incubation, the available phosphorus content increased by 10.2% - 14.8% and 24.7% - 35.0% respectively in lime concretion black soil and fluvo-aquic soil, and the enhancement effect of phosphorus effectiveness by the four treatments of decomposed straw application in lime concretion black soil and fluvo-aquic soil were in order of S > SG > SH > SF and SF > S > SG > SH, respectively. ② The relative contents of active and moderately stable phosphorus pools increased while the relative contents of stable phosphorus pool decreased in lime concretion black soil with the application of decomposed straw. After 60 days of incubation, the accumulation of active phosphorus in SG treatment was significantly higher than those in other treatments (P < 0.05), which increased by 19.8% compared with CK. In fluvo-aquic soil, the relative content of the active phosphorus pool increased, while the relative contents of moderately stable phosphorus (except SG treatment) and stable phosphorus pools (except S and SH treatments) decreased. After 60 days of incubation, the accumulation of active phosphorus in SF treatment was significantly higher than those in other treatments (P < 0.05), which increased by 11.4% compared with CK. ③ Correlation and redundancy analyses showed that the available phosphorus contents in two soils were significantly positively correlated with soil organic matter content, and the transformation of phosphorus fractions was significantly influenced by soil pH in lime concretion black soil, and by soil alkaline phosphatase activity in fluvo-aquic soil.Conclusion The application of decomposed straw significantly enhanced the phosphorus effectiveness, which mainly promote the conversion of inactive phosphorus to active phosphorus in two soils. And the application of decomposed straw with goethite was more effective in lime concretion black soil, while the application of decomposed straw with ferrihydrite was more effective in fluvo-aquic soil.
-
表 1 不同处理对砂姜黑土、潮土基本性质的影响
Table 1 Effects of different treatments on basic properties of lime concretion black soil and fluvo-aquic soil
土壤类型
Soil type培养时间(d)
Incubation time处理
TreatmentpH 有机质(g kg–1)
Organic matter全磷(g kg–1)
Total phosphorus碱性磷酸酶活力(μmol g–1 d–1)
Alkaline phosphatase activity砂姜黑土 7 CK 7.59 ± 0.06 a 21.26 ± 0.14 b 0.60 ± 0.02 a 14.29 ± 0.58 a S 7.50 ± 0.06 a 25.03 ± 0.60 a 0.62 ± 0.01 a 15.54 ± 0.55 a SF 7.60 ± 0.14 a 24.26 ± 1.23 a 0.63 ± 0.02 a 14.77 ± 0.37 a SG 7.52 ± 0.08 a 25.31 ± 0.63 a 0.62 ± 0.02 a 14.86 ± 0.03 a SH 7.53 ± 0.01 a 24.69 ± 0.18 a 0.61 ± 0.02 a 14.82 ± 0.83 a 60 CK 7.65 ± 0.01 d 20.34 ± 0.50 c 0.61 ± 0.02 a 15.55 ± 1.73 a S 7.95 ± 0.01 a 23.30 ± 1.05 ab 0.62 ± 0.02 a 17.03 ± 0.63 a SF 7.88 ± 0.02 b 23.37 ± 0.14 ab 0.62 ± 0.02 a 16.16 ± 0.55 a SG 7.73 ± 0.01 c 22.52 ± 0.41 b 0.62 ± 0.03 a 15.82 ± 0.60 a SH 7.65 ± 0.06 d 23.60 ± 0.20 a 0.60 ± 0.01 a 14.64 ± 1.21 a 潮土 7 CK 7.73 ± 0.02 b 22.41 ± 0.13 c 1.09 ± 0.04 a 9.61 ± 0.08 b S 7.85 ± 0.08 a 25.48 ± 0.32 b 1.06 ± 0.04 a 10.25 ± 0.18 b SF 7.85 ± 0.03 a 25.89 ± 0.14 b 1.08 ± 0.05 a 12.14 ± 1.38 a SG 7.71 ± 0.13 b 26.75 ± 0.07 a 1.07 ± 0.02 a 9.58 ± 0.18 b SH 7.76 ± 0.00 ab 27.18 ± 0.34 a 1.09 ± 0.05 a 10.10 ± 0.20 b 60 CK 7.82 ± 0.00 b 20.18 ± 0.43 c 1.06 ± 0.06 a 10.12 ± 1.24 a S 7.85 ± 0.00 b 23.80 ± 0.34 a 1.13 ± 0.05 a 9.80 ± 0.61 a SF 8.00 ± 0.04 a 23.13 ± 0.34 b 1.09 ± 0.05 a 10.52 ± 0.30 a SG 7.87 ± 0.02 b 23.95 ± 0.69 a 1.04 ± 0.06 a 8.22 ± 0.20 b SH 7.84 ± 0.00 b 23.52 ± 0.09 ab 1.06 ± 0.04 a 9.25 ± 0.38 ab 注: 同列标记不同字母表示同一培养时间不同处理差异显著(P < 0.05)。 表 2 不同处理砂姜黑土和潮土有效磷含量与土壤基本性质的相关系数
Table 2 Correlation coefficients between basic properties and available phosphate content in lime concretion black soil and fluvo-aquic soil with different treatments
土壤类型
Soil type皮尔逊相关系数
Pearson correlation coefficientAP pH ALP SOM DTPA-Fe 砂姜黑土 AP 1 −0.566 −0.365 0.719* −0.256 pH 1 0.805** −0.301 0.370 ALP 1 −0.074 −0.047 SOM 1 −0.530 DPTA-Fe 1 潮土 AP 1 −0.133 0.202 0.937** −0.301 pH 1 0.180 −0.279 0.583 ALP 1 0.201 −0.003 SOM 1 −0.379 DTPA-Fe 1 注:*和**分别表示相关性在0.05和0.01水平达到显著和极显著。AP:有效磷,ALP:碱性磷酸活性,SOM:有机质,DTPA-Fe:有效铁。 -
[1] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522 − 537. doi: 10.1016/j.scitotenv.2017.08.095
[2] Song K, Xue Y, Zheng X Q, et al. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil[J]. Scientific Reports, 2017, 7(1): 1 − 9. doi: 10.1038/s41598-016-0028-x
[3] Zhang S, Chen S, Fenton O, et al. Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation[J]. Geoderma, 2021, 402: 115322. doi: 10.1016/j.geoderma.2021.115322
[4] 谢林花, 吕家珑, 张一平, 等. 长期施肥对石灰性土壤磷素肥力的影响Ⅱ. 无机磷和有机磷[J]. 应用生态学报, 2004, 15(5): 790 − 794. doi: 10.3321/j.issn:1001-9332.2004.05.012 [5] Leytem A B, Mikkelsen R L. The nature of phosphorus in calcareous soils[J]. Better Crops, 2005, 89(2): 11 − 13.
[6] 吴璐璐, 张水清, 黄绍敏, 等. 长期定位施肥对潮土磷素形态和有效性的影响[J]. 土壤通报, 2021, 52(2): 379 − 386. doi: 10.19336/j.cnki.trtb.2020061102 [7] 吉冰洁, 李文海, 徐梦洋, 等. 不同磷肥品种在石灰性土壤中的磷形态差异[J]. 中国农业科学, 2021, 54(12): 2581 − 2594. doi: 10.3864/j.issn.0578-1752.2021.12.009 [8] 付文杰, 张 荣, 张文辉, 等. 氨基酸对三种石灰性土壤磷素有效性的影响及其作用差异机制[J]. 土壤通报, 2021, 52(5): 1193 − 1202. [9] 孙 华, 熊德祥. 施用有机肥和溶磷细菌肥料对砂姜黑土磷素形态转化的影响[J]. 土壤通报, 2002, 33(3): 194 − 196. doi: 10.3321/j.issn:0564-3945.2002.03.009 [10] Halajnia A, Haghnia G H, Fotovat A, et al. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure[J]. Geoderma, 2009, 150(1-2): 209 − 213. doi: 10.1016/j.geoderma.2009.02.010
[11] Hosseinpur A R, Kiani S, Halvaei M. Impact of municipal compost on soil phosphorus availability and mineral phosphorus fractions in some calcareous soils[J]. Environmental Earth Sciences, 2012, 67(1): 91 − 96. doi: 10.1007/s12665-011-1482-1
[12] Teng Z D, Zhu J, Shao W, et al. Increasing plant availability of legacy phosphorus in calcareous soils using some phosphorus activators[J]. Journal of Environmental Management, 2020, 256: 109952. doi: 10.1016/j.jenvman.2019.109952
[13] Nziguheba G, Palm C A, Buresh R J, et al. Soil phosphorus fractions and adsorption as affected by organic and inorganic sources[J]. Plant and Soil, 1998, 198(2): 159 − 168. doi: 10.1023/A:1004389704235
[14] 王晓波, 车 威, 纪荣婷, 等. 秸秆还田和保护性耕作对砂姜黑土有机质和氮素养分的影响[J]. 土壤, 2015, 47(3): 483 − 489. [15] Zhang Y C, Yue D B, Lu X F, et al. Role of ferric oxide in abiotic humification enhancement of organic matter[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 585 − 591. doi: 10.1007/s10163-015-0435-2
[16] Wang M W, Zhao Z Q, Niu J F, et al. Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 697 − 708.
[17] 王 楠, 王 帅, 徐俊平, 等. 添加金属(氢)氧化物对木质素腐殖化作用的影响机理[J]. 农业环境科学学报, 2019, 38(11): 2528 − 2535. doi: 10.11654/jaes.2019-0717 [18] Huang J Z, Zhang H C. Redox reactions of iron and manganese oxides in complex systems[J]. Frontiers of Environmental Science & Engineering, 2020, 14(5): 1 − 12.
[19] 邵兴华, 章永松, 林咸永, 等. 三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系[J]. 植物营养与肥料学报, 2006, (2): 2208 − 2212. doi: 10.11674/zwyf.2006.0211 [20] 严玉鹏, 王小明, 胡 震, 等. 磷酸根在矿物表面的吸附-解吸特性研究进展[J]. 土壤, 2021, 53(3): 439 − 448. [21] Wang J, Li F J, Wang M, et al. The effect of iron oxide types on the photochemical transformation of organic phosphorus in water[J]. Chemosphere, 2022: 135900.
[22] 王韬略, 杨 柳, 陈雅玲, 等. 淹水与非淹水条件下外源水铁矿和葡萄糖对土壤磷有效性的短期影响[J]. 环境科学学报, 2019, 39(8): 2662 − 2669. [23] Qi H S, Wei Z M, Zhang J M, et al. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials[J]. Waste Management, 2019, 87: 326 − 334. doi: 10.1016/j.wasman.2019.02.022
[24] Tiessen H, Moir J O. Characterization of available P by sequential extraction[J]. Soil Sampling and Methods of Analysis, 1993, 7: 5 − 229.
[25] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社. 2000. [26] 黄少辉, 杨军芳, 刘学彤, 等. 长期小麦秸秆还田对壤质潮土磷素含量及磷盈亏的影响[J]. 作物杂志, 2020, (6): 89 − 96. [27] Yan Z J, Chen S, Dari B, et al. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil[J]. Geoderma, 2018, 322: 163 − 171. doi: 10.1016/j.geoderma.2018.02.035
[28] Zhang L, Ding X D, Peng Y, et al. Closing the loop on phosphorus loss from intensive agricultural soil: a microbial immobilization solution?[J]. Frontiers in Microbiology, 2018, 9: 104. doi: 10.3389/fmicb.2018.00104
[29] Luo G W, Sun B, Li L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD-and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632. doi: 10.1016/j.soilbio.2019.107632
[30] Medina J, Monreal C M, Antilen M, et al. Influence of inorganic additives on wheat straw composting: Characterization and structural composition of organic matter derived from the process[J]. Journal of Environmental Management, 2020, 260: 110137. doi: 10.1016/j.jenvman.2020.110137
[31] Baldwin D S, Beattie J K, Coleman L M, et al. Phosphate ester hydrolysis facilitated by mineral phases[J]. Environmental Science & Technology, 1995, 29(6): 1706 − 1709.
[32] Loeppert R H, Hallmark C T. Indigenous soil properties influencing the availability of iron in calcareous soils[J]. Soil Science Society of America Journal, 1985, 49(3): 597 − 603. doi: 10.2136/sssaj1985.03615995004900030013x
[33] 施卫明. 石灰性土壤中铁的生物有效性及其影响因素[J]. 土壤, 1990, 22(2): 75 − 77, 82. doi: 10.3321/j.issn:0253-9829.1990.02.002 [34] 张凌云, 张宪法, 翟 衡. 土壤因子对植物缺铁失绿的影响[J]. 土壤通报, 2002, 33(1): 74 − 77. doi: 10.3321/j.issn:0564-3945.2002.01.020 [35] Liesch A M, Ruiz Diaz D A, Mengel D B, et al. Interpreting relationships between soil variables and soybean iron deficiency using factor analysis[J]. Soil Science Society of America Journal, 2012, 76(4): 1311 − 1318. doi: 10.2136/sssaj2011.0379
[36] Lindsay W L, Schwab A P. The chemistry of iron in soils and its availability to plants[J]. Journal of Plant Nutrition, 1982, 5(4-7): 821 − 840. doi: 10.1080/01904168209363012
[37] Baldi E, Cavani L, Mazzon M, et al. Fourteen years of compost application in a commercial nectarine orchard: Effect on microelements and potential harmful elements in soil and plants[J]. Science of the Total Environment, 2021, 752: 141894. doi: 10.1016/j.scitotenv.2020.141894