Knowledge Graph Analysis of the Remediation Research Progress for Heavy Metal Contaminated Soil Based on Bibliometric Method
-
摘要: 为全面了解国内外场地土壤重金属污染修复领域的研究现状及前沿动态,利用CiteSpace软件对该领域的相关文献进行可视化分析。结果表明:该研究领域近12年来中外文文献发文量呈波动式增长态势,中国、美国、印度、意大利、波兰等是外文文献发文量较多的国家。该领域主要发文机构有中国科学院、中国科学院大学、浙江大学、贝尔格莱德大学、波兰科学院等,其中中国科学院占据重要地位,表明我国在该研究领域有较强的学术影响力和较为显著的贡献。从合作关系方面分析,该领域国内外作者自身科研团队内部合作紧密,但团队之间的交流合作显得不足。从关键词及聚类图分析可知,该领域研究进展分为三个阶段:第一阶段研究主题侧重于单一重金属元素在场地土壤中的变化,第二阶段侧重于污染物定性定量分析及风险评估,第三阶段侧重研发新型修复材料及通过构建模型进行风险评价。根据时区图、突现图以及研究路径可知,“源解析-重金属空间分布-联合修复技术、新型修复材料-健康风险评价”这一路径可作为该领域的研究热点及前沿。Abstract: In order to comprehensively understand the research status, research progress and frontier trends of soil heavy metal pollution remediation research at home and abroad, CiteSpace software was used to visualize and analyze the literature in the field of site soil heavy metal pollution remediation in this article. The results showed that the number of literature published in Chinese and foreign languages in this research field has shown a fluctuating growth trend in the past 12 years. China, the United States, India, Italy, Poland, etc. were countries with a large number of foreign language literature. The main publishing institutions in this field included the Chinese Academy of Sciences, the University of the Chinese Academy of Sciences, Zhejiang University, the University of Belgrade, the Polish Academy of Sciences, etc. Among them, the Chinese Academy of Sciences occupied an important position, indicating that China has a strong academic influence and significant contributions in this research field. From the perspective of cooperative relations, authors at home and abroad in this field cooperate closely within their own scientific research teams, but lack communication and cooperation between teams. From the analysis of keywords and cluster maps, it can be seen that the research progress in this field is divided into three stages. The first phase focused on the changes of a single heavy metal element in the soil of the site, and the second phase focused on qualitative and quantitative analysis and risk assessment of pollutants. The third phase focused on the research and development of new repair materials and risk assessment through the construction of models. According to the time zone map, emergent map and research path, the path of "source analysis - spatial distribution of heavy metals - joint repair technology, new repair materials - health risk assessment" can be used as the research hotspot and frontier in this field.
-
Keywords:
- Soil of development land /
- Heavy metal /
- Remediation /
- Research advance /
- Bibliometric method
-
表 1 场地土壤重金属污染修复研究领域外文文献发文量前10位国家排名
Table 1 The top 10 most productive countries of foreign language literatures in the research field of heavy metal remediation of contaminated site soil
序号
Serial number发文量(篇)
Number of articles发文国家
Country of issue占全部发文量的百分比(%)
Percentage of total publications1 1788 PR CHINA中国 25 2 710 USA美国 10 3 566 INDIA印度 8 4 402 ITALY意大利 6 5 367 POLAND波兰 5 6 360 FRANCE法国 5 7 352 SPAIN西班牙 5 8 298 GERMANY德国 4 9 269 AUSTRALIA澳大利亚 4 10 231 ENGLAND英国 3 表 2 场地土壤重金属修复研究中文文献发文量前10位载文机构排名
Table 2 The top 10 documentation agencies of Chinese literature in the research field of the remediation of heavy metal contaminated site soil
机构名称
Institution发文数量(篇)
Number of articles信息产业电子第十一设计研究院科技工程股份有限公司 4 深圳市铁汉生态环境股份有限公司 3 福建省金皇环保科技有限公司 2 中国环境保护产业协会重金属防治与土壤修复专业委员会 2 山西晋环科源环境资源科技有限公司 2 江苏测润环境工程有限公司南京国环科技股份有限公司 2 山西省地质工程勘察院 2 浙江省第十一地质大队 2 中国瑞林工程技术股份有限公司 2 环境保护部华南环境科学研究所 2 表 3 场地土壤重金属修复研究外文文献发文量前10位载文机构排名
Table 3 The top 10 documentation agencies of foreign language literature in the research field of the remediation of heavy metal contaminated site soil
机构名称
Institution发文数量(篇)
Number of articlesChinese Acad Sci 438 Univ Chinese Acad Sci 123 Beijing Normal Univ 84 Zhejiang Univ 81 Univ Belgrade 79 Polish Acad Sci 67 China Univ Geosci 58 Chinese Res Inst Environm Sci 57 Nanjing Univ 54 CSIC 54 表 4 中文文献6位高产作者
Table 4 Information on 6 highly productive authors in the Chinese literature
序号
Serial number作者姓名
Author初始发表年份
Year of initial publication发文数量(篇)
Number of articles1 黄冠燚 2011 4 2 陈家桂 2011 4 3 李萌 2016 3 4 许石豪 2017 3 5 佟雪娇 2016 3 6 周海燕 2012 3 表 5 外文文献10位高产作者信息
Table 5 Information on 20 highly productive authors in English literature
序号
Serial number作者姓名
Author初始发表年份
Year of initial publication发文数量(篇)
Number of articles1 R Naidu 2010 35 2 K Ahmad 2014 30 3 Z Khan 2014 29 4 D Tsang 2011 27 5 J Falandysz 2010 23 6 M Megharaj 2010 22 7 F Wang 2015 15 8 G Jarzynska 2011 14 9 A Ashfaq 2015 14 10 P Thavamani 2012 13 -
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689 − 1692. [2] Fei J C, Min X B, Wang Z X, et al. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China[J]. Environmental Science and Pollution Research, 2017, 24(35): 27573 − 27586. doi: 10.1007/s11356-017-0310-x
[3] 曹俊雅, 张 婧, 张文茜, 等. 土壤中重金属铬 (Ⅵ) 污染修复技术的研究进展[J]. 土壤通报, 2022, 53(5): 1220 − 1227. [4] Keshavarzi A, Kumar V, Ertunc G, et al. Ecological risk assessment and source apportionment of heavy metals contamination: an appraisal based on the Tellus soil survey[J]. Environmental Geochemistry and Health, 2021, 43(5): 2121 − 2142. doi: 10.1007/s10653-020-00787-w
[5] 赵庆龄, 路文如. 土壤重金属污染研究回顾与展望−—基于web of science数据库的文献计量分析[J]. 环境科学与技术, 2010, 33(6): 105 − 111. [6] 秦晓楠, 卢小丽, 武春友. 国内生态安全研究知识图谱−—基于Citespace的计量分析[J]. 生态学报, 2014, 34(13): 3693 − 3703. [7] 冯敬云, 聂新星, 刘 波, 等. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764 − 777. [8] 扈亲怀, 张 青, 王煌平, 等. 不同粒径磷矿粉钝化土壤重金属Cd、Pb的机制研究[J]. 农业资源与环境学报, 2014, 31(2): 164 − 168. [9] 黄柏豪, 吴秦慧姿, 肖 亨, 等. 连施石灰对Cd污染土壤Cd形态及稻麦吸收Cd的影响[J]. 中国土壤与肥料, 2020, (3): 138 − 143. [10] 王期凯, 郭文娟, 孙国红, 等. 生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J]. 农业资源与环境学报, 2015, 32(6): 583 − 589. [11] Mandal S, Pu S Y, Adhikari S, et al. Progress and future prospects in biochar composites: Application and reflection in the soil environment[J]. Critical Reviews in Environmental Science and Technology, 2020, 51(3): 219 − 271.
[12] Bai G C, Yang J, Xia J G, et al. Recent advances on remediation of heavy metal contaminated soil via biochar[J]. Fresenius Environmental Bulletin, 2018, 27(8): 5455 − 5461.
[13] Yue L Y, Ma C, Du J J. Recent advance on biochar remediation of heavy metal pollution in soil[J]. Fresenius Environmental Bulletin, 2020, 29(8): 7166 − 7170.
[14] 安显金, 李 维. 基于CNKI的我国生物炭研究趋势文献计量学分析[J]. 农业资源与环境学报, 2018, 35(6): 483 − 491. [15] 林 汲, 程 琛, 韩明强, 等. 硅藻土有机肥对Cd-Zn复合污染土壤重金属形态和有效性的影响[J]. 农业资源与环境学报, 2014, 31(4): 366 − 371. [16] Liu Y X, Sun X Y, Li S, et al. Influence of green waste compost on Pb-polluted soil remediation, soil quality improvement, and uptake by Pakchoi cabbage[J]. Environmental Science and Pollution Research, 2020, 27(7): 7693 − 7701. doi: 10.1007/s11356-019-07505-9
[17] 程涵宇, 栾慧君, 刘汉湖. 基于文献计量分析土壤重金属污染修复研究现状[J]. 环境保护与循环经济, 2020, 40(9): 12 − 18. [18] 吴同亮, 王玉军, 陈怀满, 等. 基于文献计量学分析2016年环境土壤学研究热点[J]. 农业环境科学学报, 2017, 36(2): 205 − 215. [19] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(S2): 213 − 220. [20] Liu S M, Yang B, Liang Y S, et al. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils[J]. Environmental Science and Pollution Research, 2020, 27(14): 16069 − 16085. doi: 10.1007/s11356-020-08282-6
[21] LIU L, LI W, SONG W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633(2): 206 − 219.
[22] 王泓博, 苟文贤, 吴玉清. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277 − 2288. [23] 金芮合, 刘 敏, 何尔凯, 等. 场地土壤污染物归趋、风险评估和修复治理研究进展[J]. 土壤通报, 2022, 53(2): 492 − 501. [24] 王美娥, 丁寿康, 郭观林, 等. 污染场地土壤生态风险评估研究进展[J]. 应用生态学报, 2020, 31(11): 3946 − 3958. [25] 刘培亚, 李玉姣, 胡鹏杰, 等. 复合淋洗剂土柱淋洗法修复Cd、Pb污染土壤[J]. 环境工程, 2015, 33(1): 163 − 167. doi: 10.13205/j.hjgc.201501038 [26] Gu F, Zhang J P, Shen Z Q, et al. A review for recent advances on soil washing remediation technologies[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(4): 651 − 658. doi: 10.1007/s00128-022-03584-6
[27] 张 溪, 周爱国, 甘义群, 等. 金属矿山土壤重金属污染生物修复研究进展[J]. 环境科学与技术, 2010, 33(3): 106 − 112. [28] 陈雅丽, 翁莉萍, 马 杰, 等. 近十年中国土壤中重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219 − 2238. doi: 10.11654/jaes.2018-1449 [29] 戴 彬,吕建树,战金成,等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 2015, 36(2): 507 − 515. [30] 刘 硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1): 270 − 279. [31] Zhang Y H, Hou D Y, O'Connor D, et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(15): 1386 − 1423. doi: 10.1080/10643389.2019.1571354
[32] 李俊凯, 张 丹, 周 培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征[J]. 环境科学, 2018, 39(8): 3845 − 3853. [33] 何东明, 王晓飞, 陈丽君, 等. 基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J]. 农业资源与环境学报, 2014, 31(2): 126 − 131. [34] Meng T T, Liu J B, Qu, SD, et al. Ecological risk assessment management methods of heavy metal pollution urban green lands[J]. Fresenius Environmental Bulletin, 2022, 31(3): 3390 − 3397.
[35] 罗 杨, 吴永贵, 段志斌, 等. 基于CiteSpace重金属生物可给性的文献计量分析[J]. 农业环境科学学报, 2020, 39(1): 17 − 27. [36] 丁国玉, 张 斌, 万正茂, 等. 场地健康风险评估及生物可给性的应用[J]. 环境科学与技术, 2014, 37(S1): 372 − 376. [37] Biswas J K, Banerjee A, Rai M K, et al. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation[J]. Biodegradation, 2018, 29(4): 323 − 337. doi: 10.1007/s10532-018-9835-z
[38] 张相鲁, 刘幽燕, 卢宇浩, 等. 塔宾曲霉胞外聚合物协同膨润土钝化处理铅污染土壤[J]. 环境工程, 2021, 39(5): 171 − 177. [39] 苏炳林, 孙梦强, 林加奖, 等. 绿色合成纳米氧化铁对污染土壤中镉的钝化研究[J]. 环境科学学报, 2019, 39(3): 908 − 916. [40] Baragano D, Forjan R, Fernandez B, et al. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil[J]. Environmental Science and Pollution Research, 2020, 27(27): 33681 − 33691. doi: 10.1007/s11356-020-09586-3
[41] 马岩. 场地土壤重金属污染源解析及风险评价研究[D]. 大连: 大连理工大学, 2018. [42] 陈志凡, 化艳旭, 徐 薇, 等. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 2020, 40(1): 276 − 283. [43] Li Y Y, Yuan Y, Sun C J, et al. Heavy metals in soil of an Urban Industrial Zone in a metropolis: risk assessment and source apportionment[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 435 − 446. doi: 10.1007/s00477-020-01779-z
[44] Rodriguez L, Ruiz E, Alonso-Azcarate J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management, 2020, 90(2): 1106 − 1116.
[45] Li F Y, Fan Z P, Xiao P F, et al. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China[J]. Environmental Geology, 2009, 57(8): 1815 − 1823. doi: 10.1007/s00254-008-1469-8
[46] Lei M, Zhang Y, Khan S, et al. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area[J]. Environmental Monitoring and Assessment, 2010, 168(4): 215 − 222.
[47] Silva E F, Avila P F, Salgueiro A R, et al. Quantitative-spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine[J]. Environmental Science and Pollution Research, 2013, 20(11): 7534 − 7549. doi: 10.1007/s11356-013-1495-2
[48] Zhu J F, Gao W C, Zhao W T, et al. Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil[J]. Environmental Science and Pollution Research, 2021, 28(10): 12648 − 12658. doi: 10.1007/s11356-020-11202-3
[49] Cui Z J, Zhang X, Yang H H, et al. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp.[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3616 − 3621. doi: 10.1016/j.jece.2017.07.021
[50] 李 强, 曹 莹, 何连生, 等. 典型冶炼行业场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2021, 42(12): 5930 − 5937. [51] 尹静玄, 王 平, 徐海音, 等. 耐镉细菌联合电动技术修复镉污染土壤的研究[J]. 环境科学学报, 2020, 40(6): 2212 − 2219. [52] Wan Y S, Zhai J, Wang A W, et al. Environmental research on remediation of Cd-contaminated soil by electrokinetic remediation[J]. Ekoloji, 2019, 28(107): 873 − 881.
[53] 杨子鹏, 肖荣波, 陈玉萍, 等. 华南地区典型燃煤电厂周边土壤重金属分布、风险评估及来源分析[J]. 生态学报, 2020, 40(14): 4823 − 4835. [54] 吴永红, 靳少非. 基于CiteSpace的重金属污染土壤修复研究文献计量分析[J]. 农业环境科学学报, 2020, 39(3): 454 − 461. doi: 10.11654/jaes.2019-0943