An Analysis of the Influence of Plant Roots on Soil Water Movement Based on Bibliometric Studies
-
摘要: 近年来,植物根系影响土壤水分运动的问题得到广泛关注,相关研究发展迅速已渐渐成为土壤学、水文学、水环境与水灾害等学科交叉研究的热点。本文从植物根系影响土壤水分运动入手,整理2000 ~ 2022年Web of Science核心合集与CNKI数据库中相关文献,计252篇,分析国内外相关研究发文现状、研究热点区域和关键词;进而围绕国内相关研究的两个热点区域(西北干旱区和西南湿润区),综述植物根系特征影响土壤水分运动研究现状与发展趋势。主要结果有:①近20来,国际和国内相关研究逐渐增多,但整体上发文量依然相对较少,Journal of Hydrology期刊成为该研究领域热门国际期刊;②国内外相关研究热点存在差异。国际期刊相关研究侧重于方法和过程研究,中文期刊相关研究则偏向于根系特征研究;③西北干旱区和西南湿润区是国内相关研究的两大热点区域,本文对上述两个地区植物根系特征及其影响土壤水分运动机制进行了分析与评述,未来相关研究应加强其研究方法和技术手段等方面的创新与发展。
-
关键词:
- 植物根系 /
- 土壤水分运动 /
- 文献分析 /
- Web of Science数据库 /
- CNKI数据库
Abstract: In recent years, the influence of plant roots on soil water movement has received extensive attention, and the related researches have developed rapidly and gradually become a hot spot in the interdisciplinary research of soil science, hydrology, water environment and water disasters. Starting with the effect of plant roots on soil water movement, this paper analyzed the current situation, hot areas and keywords of relevant research papers at home and abroad by collating 252 relevant literatures in the Core Collection of Web of Science and CNKI database from 2000 to 2022. Then, the research status and development trend of the influence of plant root characteristics on soil water movement were reviewed based on the two domestic hot spots (northwest arid area and southwest humid area). ① In the past 20 years, the number of relevant international and domestic research publications has shown a gradual increase trend, but the overall number of publications is still relatively small. Journal of Hydrology is the most popular international journal in this research field. ② There are differences in relevant research hotspots at home and abroad. The research focuses on methods and processes in international journals, while the keywords in Chinese journals tend to root characteristics. ③ The arid region in northwest China and the humid region in southwest China are the hot areas of related research in China. This paper analyzed and reviewed the mechanism of plant roots affecting soil water movement in the two regions. The innovation and development of research methods and techniques should be strengthened in the future. -
表 1 2000-2022年植物根系对土壤水分运动的影响发文量前15的期刊
Table 1 The ranked top 15 journals in number of papers published the influence of plant roots on soil water movement from 2000 to 2022
期刊名称
Journal发文量
Published paperTLCS TGCS 出版国
Country是否TOP期刊/核心期刊
TOP journal/Core journalJournal of Hydrology 16 29 466 荷兰 是 Vadose Zone Journal 12 19 435 美国 否 Geoderma 11 33 276 荷兰 是 Water Resources Research 9 6 399 美国 是 Hydrological Processes 8 23 457 英国 否 Science of The Total Environment 6 0 32 荷兰 是 Hydrology and Earth System Sciences 5 18 203 德国 是 Ecohydrology 4 1 95 美国 否 Land Degradation & Development 4 15 53 英国 是 Soil & Tillage Research 3 12 101 荷兰 是 Journal of Soils and Sediments 3 5 24 德国 否 水土保持学报 9 − − 中国 是 山地学报 3 − − 中国 是 水土保持研究 3 − − 中国 是 应用生态学报 3 − − 中国 是 表 2 WOS和CNKI数据库中植物根系对土壤水分运动的影响领域研究TOP10的关键词
Table 2 Keywords of TOP 10 studies in the field of the influence of plant roots on soil water movement based on WOS and CNKI databases
WOS数据库
Web of Science DatabaseCNIK数据库(期刊)
CNKI Database (Core journal)CNIK数据库(学位论文)
CNKI Database (Dissertation)关键词
Keyword频次
Occurrences共线强度
Total link strength关键词
Keyword频次
Occurrences共线强度
Total link strength关键词
Keyword频次
Occurrences共线强度
Total link strengthPreferential flow 34 35 优先流 19 18 优先流 32 37 Infiltration 12 13 染色示踪 10 12 土壤大孔隙 17 36 Soil moisture 10 8 根长密度 9 13 染色示踪 14 28 Dye tracer 10 6 土壤大孔隙 6 6 CT扫描 9 20 Stemflow 6 6 优先路径 5 8 植被发育斜坡 7 17 Macropore 6 5 根重密度 4 8 根系 6 5 Root distribution 6 9 染色面积比 4 5 土壤水分 4 3 Soil matrix 4 7 − − − 降雨入渗 4 12 Ecohydrology 4 7 − − − 影响因素 4 7 Forest soil 4 6 − − − 滑坡 3 8 表 3 基于WOS和CNKI数据库植物根系对土壤水分运动的影响研究以中国为研究区域的分布情况
Table 3 Research distribution about the influences of plant roots on soil water movement in China based on domestic and foreign literatures
WOS数据库
Web of Science DatabaseCNIK数据库(核心期刊)
CNKI Database(Core journal)CNIK数据库(学术论文)
CNKI Database(Dissertation)总量
Total amount占比
Proportion区域
Area数量
Number占比
Proportion区域
Area数量
Number占比
Proportion区域
Area数量
Number占比
Proportion西北 30 46.15% 西北 10 26.32% 西北 20 27.03% 60 33.90% 华东 5 7.69% 华东 1 2.63% 华东 4 5.41% 10 5.65% 华北 11 16.92% 华北 4 10.53% 华北 10 13.51% 25 14.12% 东北 1 1.54% 东北 3 7.89% 东北 2 2.7% 6 3.39% 西南 13 20.00% 西南 13 34.21% 西南 26 35.14% 52 29.38% 中南 5 7.69% 中南 7 18.42% 中南 12 16.22% 24 13.56% -
[1] 张鋆鋆, 刘冰洋, 王一凡, 等. 植物根系研究进展[J]. 天津农业科学, 2016, 22(11): 11 − 18. [2] 冯广龙, 刘昌明, 王 立. 土壤水分对作物根系生长及分布的调控作用[J]. 生态农业研究, 1996, (03): 7 − 11. [3] Nespoulous J, Merino-Martin L, Monnier Y, et al. Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots[J]. Catena, 2019, 181: 12.
[4] 丁运韬, 程 煜, 张体彬, 等. 利用HYDRUS-2D模拟膜下滴灌玉米农田深层土壤水分动态与根系吸水[J]. 干旱地区农业研究, 2021, 39(3): 23 − 32. [5] Feeney D S, Crawford J W, Daniell T, et al. Three-dimensional microorganization of the soil-root-microbe system[J]. Microbial ecology, 2006, 52(1): 151 − 158. doi: 10.1007/s00248-006-9062-8
[6] Wu Y N, Zhang Y H, Xie L M, et al. Preferential flow improves root-soil system on a small scale: A case study of two ecotypes of Phragmites communis[J]. Journal of Cleaner Production, 2021, 328: 7.
[7] Zhang Z, Cui X H, Chen J, et al. Correlation between Root Density and Soil Moisture of Caragana Microphylla in Xilinhot Grassland[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2019: 3594-3597.
[8] Wang F, Wang G, Cui J, et al. Preferential flow patterns in forested hillslopes of east Tibetan Plateau revealed by dye tracing and soil moisture network[J]. European Journal of Soil Science, 2022, 73(4).
[9] Wu Y A, Zhang Y H, Dai L Y, et al. Hydrological connectivity improves soil nutrients and root architecture at the soil profile scale in a wetland ecosystem[J]. Science of the Total Environment, 2021, 762: 8.
[10] 王伟峰, 段玉玺, 李少博, 等. 毛乌素沙地3种典型灌木生物量分配与土壤含水量特征[J]. 西部林业科学, 2018, 47(03): 45 − 49. [11] Cui X, Quan Z, Chen X, et al. GPR-based automatic identification of root zones of influence using HDBSCAN[J]. Remote Sensing, 2021, 13(6): 1227. doi: 10.3390/rs13061227
[12] Liu X, Chen J, Butnor J, et al. Noninvasive 2D and 3D mapping of root zone soil moisture through the detection of coarse roots with ground‐penetrating radar[J]. Water Resources Research, 2020, 56(5): e2019WR026930. doi: 10.1029/2019WR026930
[13] Qin Y, Chen X, Zhou K, et al. Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggut Desert[J]. Environmental earth sciences, 2013, 70(6): 2883 − 2893. doi: 10.1007/s12665-013-2528-3
[14] Gregory P J, George T S, Paterson E J P, et al. New methods for new questions about rhizosphere/plant root interactions[J]. Plant and soil, 2022, 476(1-2): 669 − 712. doi: 10.1007/s11104-022-05559-2
[15] 贾庆宇, 谢艳兵, 赵一俊, 等. 春玉米根系原位成像图片自动识别研究[J]. 气象与环境学报 2022, 38(2): 105-111. [16] 朱桂林, 韦文珊, 张淑敏, 等. 植物地下生物量测定方法概述及新技术介绍[J]. 中国草地学报, 2008, 30(3): 94 − 99. [17] Wu J, Zhang R, Gui S. Modeling soil water movement with water uptake by roots[J]. Plant and soil, 1999, 215(1): 7 − 17. doi: 10.1023/A:1004702807951
[18] Modelling soil water dynamics and root water uptake for apple trees under water storage pit irrigation[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(5): 126-134.
[19] Koch T, Heck K, Schröder N, et al. A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport[J]. Vadose Zone Journal, 2018, 17(1): 1 − 21.
[20] Liu C, Yuan Y, Zhou A, et al. Development Trends and Research Frontiers of Preferential Flow in Soil Based on CiteSpace[J]. Water, 2022, 14(19).
[21] Fusco G. Twenty Years of Common Agricultural Policy in Europe: A Bibliometric Analysis[J]. Sustainability, 2021, 13(19): 10650. doi: 10.3390/su131910650
[22] Uribe-Toril J, Luis Ruiz-Real J, Haba-Osca J, et al. Forests' First Decade: A Bibliometric Analysis Overview[J]. Forests, 2019, 10(1): 72. doi: 10.3390/f10010072
[23] Kufenko V, Geiger N. Business cycles in the economy and in economics: an econometric analysis[J]. Scientometrics, 2016, 107(1): 43 − 69. doi: 10.1007/s11192-016-1866-9
[24] Penteado B E, Fornazin M, Castro L. The Evolution of Artificial Intelligence in Medical Informatics: A Bibliometric Analysis[C]. PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021), 2021: 121-133.
[25] 徐炳成, 山 仑, 陈云明. 黄土高原半干旱区植被建设的土壤水分效应及其影响因素[J]. 中国水土保持科学, 2003, 1(4): 32 − 35. [26] Huang B. Role of root morphological and physiological characteristics in drought resistance of plants[J]. Plant-Environment Interactions. Marcel Dekker Inc. , New York, 2000: 39 − 64.
[27] 王会提, 曾凡江, 张 波, 等. 不同灌溉量对绿洲-荒漠过渡带多枝柽柳幼苗根系生长和分布的影响[J]. 西北植物学报, 2013, 33(12): 2521 − 2528. [28] 黄同丽, 唐丽霞, 陈 龙, 等. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 2019, 17(1): 89 − 94. [29] Guo L, Liu Y, Wu G L, et al. Preferential water flow: Influence of alfalfa (Medicago sativa L. ) decayed root channels on soil water infiltration[J]. Journal of Hydrology, 2019, 578: 124019. doi: 10.1016/j.jhydrol.2019.124019
[30] Shi X Q, Qin T L, Yan D H, et al. A meta-analysis on effects of root development on soil hydraulic properties[J]. Geoderma, 2021, 403: 115363. doi: 10.1016/j.geoderma.2021.115363
[31] 牛健植, 余新晓, 赵玉涛, 等. 贡嘎山暗针叶林土壤优先流形成因素的初步研究[J]. 植物生态学报, 2006, (05): 732 − 742. [32] 郑双科, 司炳成, 张志强, 等. 黄土塬区苹果园降雨入渗机制[J]. 应用生态学报, 2017, 28(09): 2870 − 2878. [33] Tian J, Zhang B Q, He C S, et al. Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed, Northwest China[J]. Agricultural and Forest Meteorology, 2019, 271: 225 − 239. doi: 10.1016/j.agrformet.2019.03.006
[34] Guo W Z, Chen Z X, Wang W L, et al. Telling a different story: The promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau[J]. Geomorphology, 2020, 350: 106879. doi: 10.1016/j.geomorph.2019.106879
[35] Liu M X, Guo L, Yi J, et al. Characterising preferential flow and its interaction with the soil matrix using dye tracing in the Three Gorges Reservoir Area of China[J]. Soil Research, 2018, 56(6): 588 − 600. doi: 10.1071/SR17238
[36] 朱雅娟, 贾志清, 薛海霞. 高寒沙地2种锦鸡儿的根系分布[J]. 西北林学院学报 2016, 31(2): 120-125. [37] Kotikian M, Parsekian A D, Paige G, et al. Observing Heterogeneous Unsaturated Flow at the Hillslope Scale Using Time-Lapse Electrical Resistivity Tomography[J]. Vadose Zone Journal, 2019, 18(1): 1 − 16.
[38] Zhu X A, Chen C F, Wu J N, et al. Can intercrops improve soil water infiltrability and preferential flow in rubber-based agroforestry system?[J]. Soil & Tillage Research, 2019, 191: 327 − 339.
[39] 谌 芸, 何丙辉, 练彩霞, 等. 紫色土区香根草不同径级的根系特征与培肥效应[J]. 草业学报, 2016, 25(02): 187 − 197. [40] Fan Y, Miguez-Macho G, Jobbágy E G, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences, 2017, 114(40): 10572 − 10577. doi: 10.1073/pnas.1712381114
[41] Cui X H, Zhang Z, Guo L, et al. The Root-Soil Water Relationship Is Spatially Anisotropic in Shrub-Encroached Grassland in North China: Evidence from GPR Investigation[J]. Remote Sensing, 2021, 13(6): 1137. doi: 10.3390/rs13061137
[42] Pei Y W, Huang L M, Li D F, et al. Characteristics and controls of solute transport under different conditions of soil texture and vegetation type in the waterewind erosion crisscross region of China's Loess Plateau[J]. Chemosphere, 2021, 273: 129651. doi: 10.1016/j.chemosphere.2021.129651
[43] 王赵男, 辛 颖, 赵雨森. 长白山系榛子灌木林根系对优先流的影响[J]. 林业科学研究, 2017, 30(06): 887 − 894. [44] Zhang Y H, Niu J Z, Zhang M X, et al. Interaction between plant roots and soil water flow in response to preferential flow paths in northern China[J]. Land Degradation & Development, 2017, 28(2): 648 − 663.
[45] Lu W X, Cheng J H, Wang W, et al. Application of the method of spatial point pattern analysis to the horizontal spatial distribution of preferential flow paths[J]. Forestry Chronicle, 2015, 91(4): 384 − 394. doi: 10.5558/tfc2015-068
[46] 常丹东. 三峡地区阔叶林地植物根系分布特征与优先路径关系分析[J]. 水土保持研究, 2014, 21(06): 41 − 46. [47] 闫加亮, 赵文智, 张勇勇. 绿洲农田土壤优先流特征及其对灌溉量的响应[J]. 应用生态学报, 2015, 26(05): 1454 − 1460. [48] Keller N, Van Meerveld I, Ghazoul J, et al. Dung beetles as hydrological engineers: effects of tunnelling on soil infiltration[J]. Ecological Entomology, 2022, 47(1): 84 − 94. doi: 10.1111/een.13094
[49] 杜振宇, 刘方春, 马丙尧, 等. 滨海盐碱地人工刺槐绒毛白蜡混交林的根系分布与细根生长[J]. 林业科学, 2014, (03): 10 − 15. [50] 卢华兴, 段 旭, 赵洋毅, 等. 滇南地区普洱茶树根系对土壤优先路径形成的影响[J]. 水土保持学报, 2021, 35(4): 80 − 87. [51] Bogner C, Gaul D, Kolb A, et al. Investigating flow mechanisms in a forest soil by mixed-effects modelling[J]. European Journal of Soil Science, 2010, 61(6): 1079 − 1090. doi: 10.1111/j.1365-2389.2010.01300.x
[52] Wu G L, Cui Z, Huang Z. Contribution of root decay process on soil infiltration capacity and soil water replenishment of planted forestland in semi-arid regions[J]. Geoderma, 2021, 404(1-2): 115289.
[53] 张家明, 徐则民, 李 峰, 等. 植被发育斜坡土体大孔隙结构多尺度特征[J]. 山地学报, 2019, 37(5): 717 − 727. [54] Angers D A, Caron J J B. Plant-induced changes in soil structure: processes and feedbacks[J]. Biogeochemistry, 1998, 42(1): 55 − 72.
[55] Kung K S. Preferential flow in a sandy vadose zone: 1. Field observation[J]. Geoderma, 1990, 46(1-3): 51 − 58. doi: 10.1016/0016-7061(90)90006-U
[56] Benegas L, Ilstedt U, Roupsard O, et al. Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America[J]. Agriculture, ecosystems & environment, 2014, 183: 185 − 196.
[57] Caron A J J B. Plant-Induced Soil Changes: Processes and Feedbacks| | Plant-Induced Changes in Soil Structure: Processes and Feedbacks[J]. Biogeochemistry, 1998, 42(1-2): 55 − 72.
[58] Kung K J G. Preferential flow in a sandy vadose zone: 1. Field observation[J]. Geoderma, 1990, 46(1): 51 − 58.
[59] Devitt D A, Smith S D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99 − 108. doi: 10.1006/jare.2001.0853