Effects of Foliar Fertilizer and Bamboo Charcoal Organic Fertilizer on Cadmium Uptake in Soil-Rice-Shrimp System and Its Health Evaluation
-
摘要:目的
为探究不同修复材料对镉(Cd)污染稻虾种养系统的修复效果。
方法本研究以南方稻虾田为对象,设计了叶面肥和竹炭有机肥及其组合共6组不同处理类型(对照CK,T1为叶面喷施硒肥,T2为叶面喷施L-半胱氨酸,T3为竹炭有机肥,T4为竹炭有机肥 + 硒肥,T5为竹炭有机肥 + L-半胱氨酸);测定土壤pH值、有机质、土壤不同形态Cd含量、水稻植株各部位以及小龙虾Cd含量;运用结合强度指数、迁移率指数、潜在生态风险指数和膳食风险指数分别对土壤、水稻各部位、小龙虾Cd污染风险进行评价。
结果T3 ~ T5处理土壤pH值、有机质较CK处理显著上升,上升幅度分别为5.71% ~ 6.12%和3.28% ~ 4.23%。DTPA提取态Cd含量处理显著下降,下降率分别为18.46%、19.81%和17.59%。土壤酸可提取态分布比例显著下降、残渣态分布比例显著上升,有效降低了土壤中Cd的生物有效性和迁移性。此外,T1 ~ T5处理水稻植株根、茎、叶、稻米Cd含量较CK处理显著下降,降幅分别为18.28% ~ 84.68%、26.92% ~ 93.08%、21.79% ~ 88.46%和27.76% ~ 96.84%。各处理的稻米膳食风险指数及水稻植株潜在生态风险指数顺序为CK > T3 > T1 > T2 > T5 > T4。
结论施加竹炭有机肥 + 叶面阻控剂处理降Cd效果更佳,更有利于保障研究区的稻谷安全,降低水稻茎叶还田利用和人体食用健康风险。
Abstract:ObjectiveThe aim was to explore the remediated materials for cadmium (Cd)-contaminated soil-rice and shrimp breeding system.
MethodsThe rice and shrimp fields in Southern China were selected, and 6 different treatment types of foliar fertilizer and bamboo charcoal organic fertilizer and their combinations were designed, including CK (check), T1 (foliar spray with selenium fertilizer) and T2 (foliar spray with selenium fertilizer + L-cysteine), T3 (bamboo charcoal organic fertilizer), T4 (bamboo charcoal organic fertilizer + selenium fertilizer) and T5 (bamboo charcoal organic fertilizer + L-cysteine). Soil pH value, soil organic matter (SOM), Cd forms in soil, Cd content in different parts of rice and crayfish were determined. The Cd pollution risk values of soil, rice and crayfish were evaluated by the integration index, mobility index, potential ecological risk index and dietary risk index, respectively.
ResultsSoil pH value and SOM in T3 - T5 treatments were significantly increased compared with the CK, and the increase rates were 5.71% - 6.12% and 3.28% - 4.23%, respectively. The contents of DTPA-extracted Cd decreased significantly, and the decreasing rates were 18.46%, 19.81% and 17.59%, respectively. The Cd distribution proportion in acid extraction in soil decreased significantly, and the distribution proportion in residual forms increased significantly, which effectively reduced the bioavailability and migration of Cd in soil. In addition, the contents of Cd in roots, stalks, leaves and seeds under T1-T5 treatments decreased significantly compared with CK treatment, by 18.28% - 84.68%, 26.92% - 93.08%, 21.79% - 88.46% and 27.76% - 96.84%, respectively. The order of dietary risk index and potential ecological risk index was CK > T3 > T1 > T2 > T5 > T4.
ConclusionThe application of bamboo charcoal organic fertilizer plus leaf surface inhibitor has better Cd reduction effect, which is more conducive to ensure the safety of rice.
-
Keywords:
- Soil /
- Cd pollution /
- Rice /
- Pollution evaluation /
- Bamboo charcoal organic fertilizer /
- Foliar resistance agent
-
表 1 实验地耕层土壤基本理化性质
Table 1 Basic physical and chemical properties of top soil in the experimental site
pH 总镉(mg kg–1)
Total Cd土壤有机质(g kg–1)
SOM阳离子交换量(cmol kg–1)
CEC碱解氮(mg kg–1)
AN有效磷(mg kg–1)
AP指标测试值 4.2 0.33 22.92 6.08 170.45 12.54 (GB 15168-2018)
风险筛选值≤ 5.5 0.3 − − − − 表 2 田间试验设计表
Table 2 Field trial arrangement design
处理
Treatment处理内容
Treatment content施用方法
Application processCK 对照 无 T1 硒肥(液体) 硒肥用量为1500 ml hm–2,兑水(1:500)之后搅拌均匀,人工使用喷雾机分别在分蘖期、齐穗期
(下午4点后)均匀喷施T2 L-半胱氨酸(固体) L-半胱氨酸用量为1296 g hm–2,兑水(浓度2.88‰)之后搅拌使其充分溶解,人工使用喷雾机分别在分蘖期、齐穗期(下午4点后)均匀喷施 T3 竹炭有机肥(固体) 竹炭有机肥用量为1500 kg hm–2,在水稻种植前一周撒施,并翻耕混匀 T4 竹炭有机肥 + 硒肥 竹炭有机肥用量为1500 kg hm–2,在水稻种植前一周撒施,并翻耕混匀;硒肥用量为1500 ml hm–2,兑水(1∶500)之后搅拌均匀,人工使用喷雾机分别在分蘖期、齐穗期(下午4点后)均匀喷施 T5 竹炭有机肥 + L—半胱氨酸 竹炭有机肥用量为1500 kg hm–2,在水稻种植前一周撒施,并翻耕混匀;L—半胱氨酸用量为1296
g hm–2,兑水(浓度2.88‰)之后搅拌使其充分溶解,人工使用喷雾机分别在分蘖期、齐穗期(下午4点后)均匀喷施表 3 修复材料及投入物基本性状
Table 3 Basic properties of restoration materials and inputs
名称
Name主要成分
Main component重金属Cd含量(mg kg–1)
Cd content竹炭有机肥(Bcof) 有机质:≥ 45%;总养分:≥ 5% 0.05 硒肥(Se) 硒肽:2 g L−1;游离氨基酸:≥ 100 g L−1;微量元素总量:≥ 20 g L−1 未检出 L—半胱氨酸(L—Cys) L-Cys:98.5% 未检出 小龙虾饲料 TP ≥ 1.2%、40% ≥ 粗蛋白质 ≥ 30% 0.291 复合肥 总养分 ≥ 25%,N:15%;P2O2:10%;K2O:5% 0.074 表 4 潜在生态风险指数及其等级划分
Table 4 Potential ecological risk index and its classification
潜在生态是风险指数
Potential ecological risk index等级
Level风险程度
Pollution degreeEir < 40 Ⅰ 轻微生态风险 40 ≤ Eir < 80 Ⅱ 中等生态风险 80 ≤ Eir < 160 Ⅲ 较强生态风险 160 ≤ Eir < 320 Ⅳ 强烈生态风险 Eir ≥ 320 Ⅴ 极强生态风险 表 5 农产品健康风险评价参数及取值
Table 5 Parameters and values for health risk evaluation of agricultural products
表 6 土壤重金属Cd的结合强度指数和迁移率指数
Table 6 Reduced partition index, metal bioavailability index of heavy metal Cd in soil
处理
TreatmentIR MF CK 0.163 ± 0.005 b 0.719 ± 0.005 a T1 0.160 ± 0.007 b 0.717 ± 0.013 a T2 0.172 ± 0.009 b 0.695 ± 0.007 a T3 0.225 ± 0.007 ab 0.621 ± 0.025 b T4 0.231 ± 0.012 b 0.619 ± 0.018 b T5 0.217 ± 0.000 a 0.630 ± 0.012 b 表 7 水稻植株不同部位潜在生态危害指数
Table 7 Potential ecological hazard indices for different parts of rice plant
处理
TreatmentEir(根)
RootEir(茎)
StemEir(叶)
Leaf数值
Value等级
Level数值
Value等级
Level数值
Value等级
LevelCK 371.907 Ⅴ 129.710 Ⅲ 78.129 Ⅰ T1 272.321 Ⅳ 94.628 Ⅱ 29.845 Ⅰ T2 259.668 Ⅳ 53.455 Ⅱ 17.119 Ⅰ T3 304.069 Ⅳ 98.409 Ⅱ 60.820 Ⅰ T4 56.938 Ⅱ 8.961 Ⅰ 8.637 Ⅰ T5 124.760 Ⅲ 14.116 Ⅰ 11.725 Ⅰ 表 8 不同处理稻米Cd含量及膳食风险指数
Table 8 Cd content and dietary risk index of rice in different treatments
处理
Treatment稻米Cd含量(mg kg−1)
Cd content in brown rice非致癌风险
Noncarcinogenic risk致癌风险
Carcinogenic risk靶标危险系数
THQ致癌系数
CR致癌风险等级
Risk levelsCK 0.595 ± 0.010 a 3.176 2.23 × 10–4 较大风险 T1 0.177 ± 0.027 c 0.947 6.65 × 10–5 可接受 T2 0.136 ± 0.020 d 0.725 5.09 × 10–5 可接受 T3 0.424 ± 0.019 b 2.263 1.59 × 10–4 较大风险 T4 0.019 ± 0.004 e 0.101 7.06 × 10–6 可忽略 T5 0.022 ± 0.007 e 0.115 8.10 × 10–6 可忽略 表 9 不同处理小龙虾Cd含量及膳食风险指数
Table 9 Cd contents and dietary risk indices of crayfish in different treatments
处理
Treatment小龙虾肌肉Cd含量(mg kg–1)
Cd content in crayfish非致癌风险
Noncarcinogenic risk致癌风险
Carcinogenic risk靶标危险系数
THQ致癌系数
CR致癌风险等级
Risk levelCK 0.025 ± 0.004 a 0.0035 2.46 × 10–7 可忽略 T1 0.027 ± 0.003 a 0.0037 2.61 × 10–7 可忽略 T2 0.024 ± 0.002 ab 0.0033 2.34 × 10–7 可忽略 T3 0.025 ± 0.003 ab 0.0034 2.40 × 10–7 可忽略 T4 0.019 ± 0.002 b 0.0026 1.82 × 10–7 可忽略 T5 0.024 ± 0.005 ab 0.0033 2.32 × 10–7 可忽略 表 10 水稻不同部位Cd转移系数
Table 10 Cd transfer coefficients for different parts of rice
处理
TreatmentTF茎部/根部
TFstem/rootTF叶部/茎部
TFleaf/stemTF稻米/茎部
TFRice/stemCK 0.350 ± 0.033 a 0.602 ± 0.033 c 0.460 ± 0.027 a T1 0.348 ± 0.027 a 0.317 ± 0.031 d 0.188 ± 0.033 bc T2 0.207 ± 0.023 b 0.320 ± 0.015 d 0.253 ± 0.025 b T3 0.326 ± 0.046 a 0.623 ± 0.093 c 0.434 ± 0.055 a T4 0.158 ± 0.034 bc 0.969 ± 0.062 a 0.216 ± 0.059 bc T5 0.113 ± 0.009 c 0.833 ± 0.048 b 0.151 ± 0.034 c 表 11 不同经济效益分析
Table 11 Analysis of different economic benefits
处理
Treatment投入(元 hm–2)
Input产出(元 hm–2)
Output投入产出比
Input-output ration修复材料
Repair material亲虾
Procamentus clarkia其他
Other总投入
Total input水稻
Rice小龙虾
Procamentus clarkia总产出
Total outputCK 0 8625 12000 20625 12047 35295 47342 2.3 T1 1920 8625 12000 22545 19514 36270 55784 2.47 T2 4017 8625 12000 24624 19974 37245 57219 2.32 T3 2400 8625 12000 23025 13061 36465 49526 2.15 T4 2820 8625 12000 24945 20461 37635 58096 2.33 T5 4917 8625 12000 25542 20913 38220 59133 2.32 -
[1] Schneider A R, Morvan X, Saby N P A, et al. Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a secondary lead smelter[J]. Environmental Science and Pollution Research, 2016, 23: 15164 − 15174. doi: 10.1007/s11356-016-6624-2
[2] Chen L, Zhou S, Wu S, et al. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China[J]. Environmental Pollution, 2019, 255: 113301. doi: 10.1016/j.envpol.2019.113301
[3] Chen L, Wang G, Wu S, et al. Heavy metals in agricultural soils of the Lihe River watershed, East China: spatial distribution, ecological risk, and pollution source[J]. International Journal of Environmental Research and Public Health, 2019, 16(12): 2094. doi: 10.3390/ijerph16122094
[4] 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(05): 10-11. [5] 张祖烨, 何梦园, 乔 月, 等. Agromyces sp. CS16去除水体中重金属镉、镍、铜、锌离子的研究[J/OL]. 微生物学报: 1-20 2023-05-15]. 2023-05-15].
[6] Yu J, Han J, Kim Y J, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences, 2017, 114(46): 12327 − 12332. doi: 10.1073/pnas.1705189114
[7] 刘 静, 李树先, 朱 江, 等. 浅谈几种重金属元素对人体的危害及其预防措施[J]. 中国资源综合利用, 2018, 36(3): 182 − 184. doi: 10.3969/j.issn.1008-9500.2018.03.064 [8] 唐建军, 李 巍, 吕修涛, 等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米, 2020, 26(5): 1 − 10. doi: 10.3969/j.issn.1006-8082.2020.05.001 [9] 胡亮亮, 赵璐峰, 唐建军, 等. 稻鱼共生系统的推广潜力分析——以中国南方10省为例[J]. 中国生态农业学报(中英文), 2019, 27(7): 981 − 993. [10] 罗盼军, 马倩倩, 武 均, 等. 生物炭与叶面硒肥联合施用对生菜吸收镉及土壤镉形态的影响[J]. 土壤通报, 2022, 53(4): 956 − 964. [11] 孙家婉, 张振华, 赵玉萍, 等. 生物炭改性及其在农田土壤重金属修复中的应用研究进展[J]. 江苏农业科学, 2022, 50(10): 9 − 15. [12] 张梅华, 姜朵朵, 于 松, 等. 叶面肥对农作物阻镉效应机制研究进展[J]. 大麦与谷类科学, 2017, 34(3): 1 − 5. [13] 任利娟, 卢维宏, 李嘉琦, 等. 叶面阻控剂在重金属污染耕地土壤安全利用中的应用[J]. 中国土壤与肥料, 2022(11): 230 − 236. doi: 10.11838/sfsc.1673-6257.21520 [14] Lin L, Zhou W H, Dai H W, et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Journal of Hazardous Materials, 2012, 235: 343 − 351.
[15] 谭旭生, 曾跃华, 李智谋, 等. 硒肥施用对稻米中镉等重金属含量的影响[J]. 中国稻米, 2014, 20(1): 76 − 77. doi: 10.3969/j.issn.1006-8082.2014.01.018 [16] 袁 凯. 氨基酸和钙镁磷肥对水稻镉积累的影响[D]. 中国农业科学院, 2022. [17] 刘雅萍, 王常荣, 任兴华, 等. 叶施谷胱甘肽对水稻镉和矿质元素含量的影响[J]. 农业环境科学学报, 2022, 41(9): 1864 − 1874. [18] Tang J , He J , Liu T , et al. Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism[J]. Rsc Advances, 2017, 7(53): 33385-33401.
[19] 田 威, 李 娜, 倪才英等. 江西省稻渔系统中土壤和稻谷重金属污染特征及健康风险评价[J]. 生态毒理学报, 2021, 16(3): 331 − 339. [20] USEPA, 2011. Exposure Factors Handbook 2011 Edition (Final Report). U. S. Environmental Protection Agency, Washington, DC, USA.
[21] 陈家乐, 相满城, 唐林茜, 等. 运积型地质高背景稻田土壤重金属污染和人体健康风险评价[J]. 生态学杂志, 2021, 40(8): 2334 − 2340. [22] 徐常艳, 卢新哲, 何 丽, 等. 浙西典型黑色页岩区稻田土壤重金属污染及人体健康风险评价[J]. 环境生态学, 2022, 4(4): 11 − 20. [23] 曾小雨. 长江中下游地区小龙虾重金属污染特征、富集规律及健康风险评估[D]. 武汉轻工大学, 2022. [24] 胡宇楠, 林承奇, 黄华斌. 九龙江流域稻米重金属生物可给性及食用健康风险[J]. 环境化学, 2022, 41(7): 2211 − 2220. [25] 张 迪, 周明忠, 熊康宁, 等. 贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J]. 环境科学研究, 2021, 34(5): 1247 − 1257. [26] 陶荣浩, 袁旭峰, 吴新德, 等. 修复肥料和紫云英对水稻吸收积累镉的影响[J]. 农业环境科学学报, 2023, 42(1): 76 − 86. doi: 10.11654/jaes.2022-0662 [27] 周 振, 黄 丽, 黄国棣, 等. 生物炭和海泡石复配对镉和锌复合污染土壤的钝化修复[J]. 华中农业大学学报, 2023, 42(2): 158 − 166. [28] 张 茹, 赵宝平, 王永宁, 等. 不同镉浓度对3个燕麦品种光合特性及镉富集转运系数的影响[J]. 草地学报, 2022, 30(8): 2089 − 2099. [29] Zhou J, Du B, Liu H, et al. The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L. )[J]. Journal of Hazardous Materials, 2019, 384.
[30] 高焕方, 曹园城, 何炉杰, 等. Tessier法和BCR法对比磷酸二氢钠处置含铅污染土壤形态分析[J]. 环境工程学报, 2017, 11(10): 5751 − 5756. doi: 10.12030/j.cjee.201611189 [31] 高广贤, 刘义强, 杨 波, 等. 化肥减量配施有机肥对盐碱地土壤性状及镉形态的影响[J]. 中国土壤与肥料, 2023(1): 30 − 38. [32] Hu X, Huang X, Zhao H, et al. Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils[J]. Journal of Cleaner Production, 2021, 284: 124713. doi: 10.1016/j.jclepro.2020.124713
[33] 姜硕琛. 硒对镉胁迫下水稻生长及镉、硒转运与富集的影响[D]. 长江大学, 2020. [34] Hu Y, Norton G J, Duan G, et al. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants[J]. Plant and Soil, 2014, 384: 131 − 140. doi: 10.1007/s11104-014-2189-3
[35] Wan Y, Yu Y, Wang Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety, 2016, 133: 127 − 134. doi: 10.1016/j.ecoenv.2016.07.001
[36] Wu Z, Yin X, Bañuelos G S, et al. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L. )[J]. Frontiers in Plant Science, 2016, 7: 1875.
[37] 任利娟, 卢维宏, 李嘉琦, 等. 叶面阻控剂在重金属污染耕地土壤安全利用中的应用[J]. 中国土壤与肥料, 2022(307): 230 − 236. [38] 张 礼, 孙 堆, 王 晓, 等. 半胱氨酸参与生物体重金属抗性的研究进展[J]. 生物技术通报, 2017, 33(5): 26 − 33. [39] 张雅荟, 王常荣, 刘月敏, 等. 叶施L-半胱氨酸对水稻镉和矿质元素含量的影响[J]. 环境科学, 2021, 42(8): 4045 − 4052. [40] 刘师豆, 朱新萍, 韩耀光, 等. 棉秆炭对碱性水稻土壤-水稻中镉迁移转化的阻控作用[J]. 环境科学, 2020, 41(4): 1871 − 1879. [41] 孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展[J]. 生态环境学报, 2015, 24(4): 8. [42] Huang D L, Liu L S, Zeng G M, et al. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal contaminated sediment[J]. Chemosphere, 2017, 174: 545 − 553. doi: 10.1016/j.chemosphere.2017.01.130