Effects of Wide-row Clustered Sugarcane Intercropping with Peanut on Plant Nutrient Uptake and Soil Nutrients
-
摘要:目的 研究宽行丛式甘蔗间作花生模式的作物养分吸收利用以及增产效应,为其推广应用提供科学依据。方法 设置宽行丛式甘蔗间作花生(IS + IP处理)、单作甘蔗(MS处理)和单作花生(MP处理)3种栽培模式,通过测定作物植株和土壤养分含量以及作物农艺性状等指标,分析比较3种栽培模式作物产量、植株和土壤养分含量差异。结果 与MS处理相比,IS + IP处理显著增加甘蔗栽培土壤养分含量,其中有效氮增加18.2% ~ 20.1%,有效磷增加17.8% ~ 35.1%,有机质含量增加12.2% ~ 38.8%;IS + IP处理的甘蔗植株全氮、全磷和全钾含量总体呈现出在花生开花下针期增加,结荚期和成熟期降低的趋势。相比MP处理,在花生各生育期IS + IP处理除了明显降低花生栽培土壤速效钾含量(降幅24.2% ~ 47.2%),植株全氮(降幅5.6% ~ 31.3%)和全钾含量(降幅12.8% ~ 26.6%)外,对其他花生栽培土壤和植株养分含量无一致性增加或降低的效应。IS + IP模式表现出明显的间作优势,LER(土地当量比)值达到1.41,IS + IP处理甘蔗产量达91731.24 kg hm−2,较MS处理显著增产、增产幅度达18.3%,花生产量达到1642.70 kg hm−2。结论 IS + IP模式显著增加甘蔗栽培土壤养分含量以及甘蔗产量,并增加一季花生产量,是一种高效种植模式。Abstract:Objective The aims were to study the difference of yield, nutrient uptake and utilization of sugarcane and peanut between Wide-row clustered sugarcane intercropping with peanut and mono-cropping mode, in order to clarify the application prospect of wide row bush sugarcane intercropping peanut.Method Cultivation modes of Wide-row clustered sugarcane intercropping with peanut (IS + IP), monoculture sugarcane (MS) and monoculture peanut (MP) were set up to study the effects of intercropping on yield, nutrient uptake and utilization of sugarcane and peanut.Result Compared with MS treatment, IS + IP treatment significantly increased the contents of soil available nitrogen (N), available phosphorus (P) and organic matter in sugarcane cultivation soil by 18.2% ~ 20.1%, 17.8% ~ 35.1% and 12.2% ~ 38.8%, respectively. Compared with MS treatment, total N, total P and total potassium (K) of sugarcane plants in IS + IP treatment increased at the acicula forming stage of peanut, and decreased at the pod producing stage and maturity stage of peanut. Compared with MP treatment, IS + IP treatment significantly decreased the content of available K in peanut cultivation soil (decreased by 24.2% ~ 47.2%), total N (decreased by 5.6% ~ 31.3%) and total K (decreased by 12.8% ~ 26.6%) in peanut plants, respectively. Wide-row clustered sugarcane intercropping with peanut showed obvious intercropping advantage with LER value of 1.41. The yield of sugarcane under IS + IP treatment was 18.3% higher than that of MS treatment. The yield of intercropping peanut was 1642.70 kg hm−2.Conclusion Wide-row clustered sugarcane intercropping with peanut significantly increased soil nutrient content, stem weight and yield of intercropped sugarcane, and increases one season's yield of peanut. It is an efficient planting mode.
-
Keywords:
- Sugarcane /
- Peanut /
- Intercropping /
- Nutrient
-
表 1 3种种植模式的甘蔗和花生的株高和干物重比较
Table 1 Comparison of plant height and dry matter weight among three planting models
时期
Stage处理
Treatment株高 (cm)
Plant height干物重 (g plant-1)
Dry weight花生开花下针期
(5月18日)MP 22.58 ± 1.14 b 22.12 ± 0.72 a IP 22.33 ± 2.45 b 20.16 ± 1.18 a MS 26.50 ± 2.31 a 8.53 ± 0.21 c IS 25.08 ± 0.94 ab 10.35 ± 0.56 b 花生结荚期
(6月19日)MP 50.83 ± 2.38 c 69.24 ± 3.65 a IP 57.17 ± 5.27 b 63.87 ± 1.14 a MS 89.00 ± 3.48 a 54.75 ± 2.37 b IS 89.67 ± 3.26 a 63.40 ± 5.36 a 花生成熟期
(7月9日)MP 62.83 ± 4.18 c 58.56 ± 4.12 b IP 77.33 ± 5.75 b 63.16 ± 2.33 b MS 148.17 ± 11.33 a 205.73 ± 8.79 a IS 150.67 ± 7.84 a 216.29 ± 5.23 a 注:同一测定日期同列数据后不同小写字母表示在0.05水平上差异显著,下表同。 表 2 3种种植模式的甘蔗和花生根系土壤养分含量和pH值比较
Table 2 Comparison of soil nutrition contents and pH values among three planting models
时期
Stage处理
Treatment有效氮
Available nitrogen
(mg kg–1)有效磷
Available phosphorus
(mg kg–1)速效钾
Available potassium
(mg kg–1)有机质
Organic matter
(g kg–1)土壤pH
Soil pH花生开花下针期
(5月18日)MP 148.05 ± 3.50 a 32.88 ± 2.53 b 85.75 ± 8.25 a 14.41 ± 0.57 a 4.38 ± 0.03 b IP 130.55 ± 12.22 b 32.86 ± 1.29 b 51.55 ± 3.22 c 12.41 ± 0.72 a 4.63 ± 0.011 b MS 125.30 ± 7.00 b 19.29 ± 0.31 c 66.72 ± 3.55 b 10.33 ± 0.07 b 6.26 ± 0.08 a IS 148.05 ± 5.24 a 48.18 ± 7.03 a 72.71 ± 8.49 b 11.72 ± 0.87 ab 4.52 ± 0.13 b 花生结荚期
(6月19日)MP 162.05 ± 1.75 a 31.63 ± 2.26 a 32.21 ± 4.42 b 12.08 ± 0.56 a 4.57 ± 0.08 a IP 155.93 ± 7.78 a 36.96 ± 2.37 a 24.43 ± 2.25 c 13.33 ± 0.69 a 4.64 ± 0.08 a MS 122.68 ± 10.53 b 17.27 ± 0.79 b 56.24 ± 7.19 a 9.86 ± 0.86 b 5.28 ± 0.23 a IS 145.43 ± 2.45 a 32.56 ± 0.94 a 33.45 ± 0.97 b 13.69 ± 0.58 a 4.88 ± 0.09 a 花生成熟期
(7月9日)MP 149.80 ± 7.05 a 29.93 ± 1.87 b 47.69 ± 3.50 a 14.46 ± 0.21 a 4.46 ± 0.18 b IP 155.93 ± 8.46 a 33.20 ± 2.08 b 25.16 ± 2.49 b 13.48 ± 0.51 a 5.02 ± 0.23 ab MS 139.30 ± 1.18 b 18.63 ± 0.59 c 24.11 ± 1.92 b 12.75 ± 0.69 b 5.55 ± 0.08 a IS 167.30 ± 3.39 a 48.67 ± 5.42 a 22.88 ± 1.38 b 14.30 ± 0.23 a 5.23 ± 0.17 a 表 3 3种种植模式的甘蔗和花生植株养分含量比较
Table 3 Comparison of plant nutrient contents among three planting models
时期
Stage处理
Treatment植株全氮 (%)
Total nitrogen content of the plant植株全磷 (%)
Total phosphoruscontent of the plant植株全钾 (%)
Total potassium content of the plant花生开花下针期
(5月18日)MP 2.09 ± 0.28 a 0.24 ± 0.07 a 1.54 ± 0.12 bc IP 1.43 ± 0.24 bc 0.22 ± 0.03 a 1.28 ± 0.08 c MS 1.39 ± 0.07 c 0.21 ± 0.01 a 1.85 ± 0.25 b IS 1.63 ± 0.07 b 0.24 ± 0.02 a 2.47 ± 0.09 a 花生结荚期
(6月19日)MP 1.75 ± 0.13 a 0.18 ± 0.06 a 1.28 ± 0.22 b IP 1.39 ± 0.05 b 0.18 ± 0.03 a 0.94 ± 0.13 c MS 1.06 ± 0.29 b 0.20 ± 0.07 a 1.73 ± 0.09 a IS 0.64 ± 0.02 c 0.12 ± 0.03 b 0.71 ± 0.04 c 花生成熟期
(7月9日)MP 1.24 ± 0.16 a 0.11 ± 0.02 a 1.33 ± 0.03 a IP 1.17 ± 0.14 a 0.12 ± 0.01 a 1.16 ± 0.17 a MS 0.65 ± 0.07 b 0.11 ± 0.02 a 0.83 ± 0.05 b IS 0.45 ± 0.04 c 0.09 ± 0.01 b 0.76 ± 0.13 b 表 4 3种种植模式的作物株高和干物重与作物植株、土壤养分含量的相关关系
Table 4 Correlation among plant height, dry matter weight, nutrient contents of plant and soil in three planting models
处理
Treatment植株全氮
Total nitrogen
in plant植株全磷
Total phosphorus
in plant植株全钾
Total potassium
in plant土壤有效氮
Soil available nitrogen土壤有效磷
Soil available phosphorus土壤速效钾
Soil available potassium土壤有机质
Soil organic matter土壤pH
Soil pH株高
Plant height干物重
Dry weightMP 株高 −0.86** −0.84** −0.11 −0.34 −0.02 −0.41 0.57 −0.28 / 0.79** 干物重 −0.87** −0.87** −0.06 −0.55 −0.06 −0.40 0.59 −0.26 0.799** / IP 株高 −0.42 −0.84** 0.47 0.56 −0.92** −0.36 0.54 0.90** / 0.80** 干物重 −0.19 −0.78* 0.35 0.69* −0.76* −0.28 0.18 0.98** 0.803** / MS 株高 −0.76* −0.81** −0.87** 0.75* −0.42 −0.51 0.80** −0.07 / 0.91** 干物重 −0.77* −0.84** −0.91** 0.76* −0.38 −0.76* 0.72* −0.06 0.91** / IS 株高 −0.68* −0.63 −0.49 0.64 0.78* −0.34 0.80** −0.28 / 0.94** 干物重 −0.70* −0.66 −0.52 0.63 0.77* −0.37 0.81** −0.28 0.94** / 注:*表示在0.05 水平上显著相关;**表示在0.01水平上极显著相关。 表 5 3种种植模式的花生和甘蔗的产量比较
Table 5 Comparison of yield of peanut and sugarcane among three planting models
处理
Treatment花生
Peanut甘蔗
Sugarcane土地当量比
Land equivalent
ratio
(LER)株数
Number of plant
(plant hm–2)单株产量
Yield per plant
(g)产量
Yield of
peanut
(kg hm–2)有效茎数
Effective stem
(stem hm–2)单茎重
Weight per stalk
(kg)株高
Plant height
(cm)甘蔗产量
Yield of
sugarcane
(kg hm–2)MP 203030.30 ± 1426.76 a 18.64 ± 4.36 a 3785.15 ± 145.88 a / / / / / MS / / / 67500 ± 725.26 a 1.13 ± 0.23 b 2.38 ± 0.06 a 77536.11 ± 325.26 b / IP + IS 94444.52 ± 870.62 b 17.39 ± 2.23 a 1642.70 ± 52.24 b 69525 ± 378.88 a 1.37 ± 0.08 a 2.48 ± 0.08 a 91731.24 ± 655.48 a 1.41 -
[1] 金 晶, 余常兵, 李必钦, 等. 不同带宽行比对湖北西南山区玉米/大豆套作体系干物质积累及产量的影响[J]. 中国油料作物学报, 2021, 43(5): 914 − 922. [2] Sekiya N, Araki H, Yano K. Applying hydraulic lift in an agroecosystem: Forage plants with shoots removed supply water to neighboring vegetable crops[J]. Plant and Soil, 2011, 341: 39 − 50 doi: 10.1007/s11104-010-0581-1
[3] Xu B C, Li F M, Shan L. Switchgrass and milkvetch intercropping under 2∶1 row-replacement in semiarid region, northwest China: Aboveground biomass and water use efficiency[J]. European Journal of Agronomy, 2008, 28(3): 485 − 492. doi: 10.1016/j.eja.2007.11.011
[4] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil, 2003, 248(1-2): 305 − 312.
[5] Brooker R W, Karley A J, Newton A C, et al. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation[J]. Functional Ecology, 2016, 30(1): 98 − 107. doi: 10.1111/1365-2435.12496
[6] Chen B, Wang J J, Zhang L M, et al. Effect of intercropping pepper with sugarcane on populations of Liriomyza huidobrensis ( Diptera: Agromyzidae) and its parasitoids[J]. Crop Protection, 2011, 30(3): 253 − 258. doi: 10.1016/j.cropro.2010.11.005
[7] 赵巴音那木拉, 德海山, 红 梅, 等. 玉米/大豆间作种植对农田大型土壤动物群落动态变化的影响[J]. 中国土壤与肥料, 2022(7): 132 − 140. [8] 肖 健, 陈思宇, 孙 妍, 等. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022(5): 1222 − 1234. [9] 李志贤, 王建武, 杨文亭, 等. 甘蔗 / 大豆间作减量施 氮对甘蔗产量、品质及经济效益的影响[J]. 应用生态学报, 2011, 22(3): 713 − 719. [10] 刘振洋, 吴鑫雨, 汤 利, 等. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系[J]. 植物营养与肥料学报, 2020, 26(07): 1284 − 1294. [11] Xie W, Zhang K, Wang X, et al. Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities[J]. BMC Plant Biology, 2022, 22: 121. doi: 10.1186/s12870-022-03506-y
[12] 沈雪峰, 方 越, 董朝霞, 等. 甘蔗花生间作对甘蔗地土壤杂草种子萌发特性的影响[J]. 生态学杂志, 2015, 34(3): 656 − 660. [13] 秦昌鲜, 彭 崇, 郭 强, 等. 甘蔗花生间作对红壤有效磷、pH值的影响[J]. 江苏农业科学, 2019, 47(11): 137 − 140. [14] 唐秀梅, 蒙秀珍, 蒋 菁, 等. 甘蔗间作花生对不同耕层土壤微生态的影响[J]. 中国油料作物学报, 2020, 42(5): 713 − 722. [15] 赵自东, 贾应明, 李言春, 等. 甘蔗与不同花生品种间套种试验总结[J]. 甘蔗糖业, 2012(2): 21 − 23 [16] 莫良玉, 徐建云, 罗贻刚, 等. 分带和宽窄行种植甘蔗的一些生理效应[J]. 广西农业大学学报, 1993, 12(3): 42 − 46 [17] 韦贵剑, 陆文娟, 彭天缘, 等. 甘蔗间套种花生最佳模式探讨[J]. 南方农业学报, 2015, 46(6): 1007 − 1011 [18] 何洪良, 韦海球, 江清梅, 等. 甘蔗宽窄行间作花生对甘蔗产量、品质及经济效益的影响[J]. 中国热带农业, 2021(6): 55 − 58. [19] 唐荣华, 廖善宗. 宽行丛式甘蔗间作花生栽培技术[J]. 农家之友, 2020(1): 58. [20] 任 意, 辛景树, 田有国, 等. 土壤检测第6部分: 土壤有机质的测定[S]. 中国, NY/T 1121.6-2006. [21] 辛景树, 郑 磊, 钟 杭, 等. 土壤检测第7部分: 土壤有效磷的测定[S]. 中国, NY/T 1121.7-2014 [22] 杜 森, 高祥照, 李花粉, 等. 土壤速效钾和缓效钾含量的测定[S]. 中国, NY/T 889-2004. [23] 张万儒, 杨光滢, 屠星南, 等. 森林土壤水解性氮的测定[S]. 中国, LY/T 1229-1999. [24] 王 敏, 南春波, 王占华, 等. 土壤pH的测定[S]. 中国, NY/T1377-2007. [25] 辛景树, 郑 磊, 黄耀蓉, 等. 植株全氮含量测定自动定氮仪法[S]. 中国, NY/T 2419-2013. [26] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 268 − 270. [27] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 270 − 271. [28] 刘子凡, 苏必孟, 黄 洁, 等. 木薯花生间作模式养分吸收与利用优势的比较[J]. 湖南农业大学学报(自然科学版), 2019, 45(5): 478 − 484. [29] 董奇琦, 袁 洋, 杜 琪, 等. 玉米花生带状间作对植株氮吸收和土壤微生物群落的影响[J]. 中国油料作物学报, 2022, 44(06): 1296 − 1306. [30] Wang G Z, Li X G, Xi X Q, et al. Crop diversification reinforces soil microbiome functions and soil health[J]. Plant and Soil, 2022, 476(1): 375 − 383.
[31] 沈雪峰, 方 越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014(5): 55 − 58. [32] 刘 颖, 王建国, 郭 峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994 − 1001. [33] 吴宇佳, 杨 春, 雷 菲, 等. 套种花生对香蕉园小气候和土壤理化性质的影响[J]. 福建农业学报, 2020, 35(3): 337 − 343. [34] 刘 培, 邵宇婷, 王志国, 等. 减氮对华南地区甜玉米//大豆间作系统产量稳定性的影响[J]. 中国生态农业学报, 2019, 27(9): 1332 − 1343. [35] 田洪敏, 罗美玲, 杨雪梅, 等. 茶树-核桃树间作模式对茶园土壤养分的影响[J]. 热带作物学报, 2019, 40(4): 657 − 663. [36] 王晓阳, 董云萍, 邢诒彰, 等. 单作和间作对槟榔和咖啡生长、根系形态及养分利用的影响[J]. 热带作物学报, 2018, 39(10): 1906 − 1912. [37] 李冬初, 黄 晶, 马常宝, 等. 中国农耕区土壤有机质含量及其与酸碱度和容重关系[J]. 水土保持学报, 2020, 34(6): 252 − 258. [38] 徐 强, 程智慧, 卢 涛, 等. 间作对植株生长及养分吸收和根际环境的影响[J]. 西北植物学报, 2010, 30(2): 350 − 356. [39] 张德闪, 王宇蕴, 汤 利, 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J]. 植物营养与肥料学报, 2013, 19(1): 127 − 133. [40] 郭桂英, 申建波. 小麦-花生间作体系中根际有效铁含量及pH值的动态分布[J]. 海南大学学报(自然科学版), 2006, 24(1): 42 − 46. [41] 曾巧英, 黄 莹, 敖俊华, 等. 施肥水平对甘蔗/大豆间作体系中植株生长及养分积累的影响[J]. 广东农业科学, 2013, 40(10): 54 − 57. doi: 10.3969/j.issn.1004-874X.2013.10.017 [42] 焦念元, 杨萌珂, 宁堂原, 等. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010 − 1017. [43] 张 昆, 万勇善, 刘风珍, 等. 不同玉米花生间作模式对饱果期花生冠层微环境及光合特性的影响[J]. 山东农业科学, 2021, 53(08): 28 − 32. [44] Verdellid, Acciaresi H A, Leguizamóne S, et al. Corn and soybeans in a strip intercropping system: crop growth rates, radiation interception, and grain yield components[J]. International Journal of Agronomy, 2012: 1-17.
[45] 闫彩霞, 张 浩, 赵小波, 等. 结荚期和饱果期花生耐盐碱性鉴定与评价[J]. 植物生理学报, 2021, 57(4): 899 − 909.