Effects of Pile Burning on Soil Nutrient Contents in a Harvested Pinus massoniana Plantation
-
摘要:目的 研究堆烧马尾松疫木采伐剩余物对土壤养分的短期影响,为制定科学的林地土壤肥力保持和植被恢复措施提供理论依据。方法 以中亚热带马尾松采伐迹地为研究对象,在堆烧1 d后采集未火烧对照和火堆不同位置(中心、边缘)的0 ~ 5 cm和5 ~ 10 cm土壤,测定土壤pH、含水量、有机质、全碳(C),以及氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、钠(Na)、铁(Fe)、锰(Mn)和铝(Al))全量和有效态含量,并计算Fe/Mn、Ca/Al、Ca/Mg和SPAR值。结果 ①与未火烧土壤相比,堆烧后土壤pH、有效K、有效Ca含量和Ca/Mg值分别显著提高了3.19%、50.83%、56.13%和28.01%。②火堆中心处的土壤质量含水量、有机质、全C和全N含量分别显著降低了14.66%、15.90%、19.97%和17.25%,而土壤Ca/Al值显著提高了107.01%;火堆边缘处的土壤质量含水量、有机质、全C含量和Ca/Al值与未火烧土壤无显著差异。③火堆中心处的0 ~ 5 cm土壤有效P含量显著提高了67.88%,而堆烧对5 ~ 10 cm土壤有效P含量无显著影响。④堆烧对土壤全量P、K、Ca、Mg、Fe、Mn、Al、Na、Fe/Mn和SPAR值均无显著影响。⑤主成分分析结果显示,堆烧显著改变了0 ~ 5 cm土壤性质,且土壤全C是驱动土壤性质变化的主要因子。结论 堆烧在短期内提高了马尾松林土壤P、K和Ca元素的有效性,且火干扰后的植被恢复措施应重点考虑火堆中心位置。Abstract:Objective The aim was to investigate the short-term effect of piled burning nematode-infected harvest residues of Pinus massoniana on soil nutrient availability, in order to provide insightful information for maintaining soil fertility and enhancing vegetation restoration in the burnt plantation.Method Soils were collected at 0 ~ 5 and 5 ~ 10 cm depth from the unburnt area and different positions (center and edge) of the post-fire piles one day after burning in a recently harvested P. massoniana in mid-subtropical China. Soil pH, moisture content, organic matter, total carbon (C), the total and available contents of (N, P, K, Ca, Mg, Na, Fe, Mn, and Al) were measured, and Fe/Mn, Ca/Al, Ca/Mg, and SPAR were also calculated.Result ① Soil pH, available K and Ca concentrations, and Ca/Mg in the burnt area were significantly increased by 3.19%, 50.83%, 56.13%, and 28.01% compared to the unburnt control. ② Soil moisture, organic matter, total C and total N concentrations in the center of the piles were significantly reduced by 14.66%, 15.90%, 19.97%, and 17.25%, respectively. However, the burning increased soil Ca/Al ratio by 107.01%. There was no significant difference in soil moisture, organic matter, and total C concentrations as well as the Ca/Al ratio between the edge of the burnt pile and the control. ③ Soil available P concentration at 0 ~ 5 cm depth in the center of the pile was significantly increased by 67.88% than that of the unburnt control, while no significant change was observed in the 5 ~ 10 cm soil. ④Pile burning had no significant effect on soil total P, K, Ca, Mg, Na, Fe, Mn, and Al concentrations, and Fe/Mn and SPAR. ⑤The principal component analysis showed that pile burning changed soil properties at the 0 - 5 cm but not the 5 - 10 cm soil layer, and soil total C was the key factor driving the change in soil properties.Conclusion Pile burning improved the availabilities of P, K and Ca in recently harvested P. massoniana plantations in the short term, and the center of piles should be taken into account in maintaining forest fertility and restoring vegetation.
-
Keywords:
- Pile burning /
- Pinus massoniana /
- Soil nutrient /
- Availability /
- Element ratio
-
表 1 堆烧对土壤养分元素全量的影响(n=10)
Table 1 Effects of pile burning on the total contents of soil nutrient elements (n=10)
土层 (cm)
Soil depth位置
LocationN
(g kg–1)P
(g kg–1)K
(g kg–1)Ca
(g kg–1)Mg
(g kg–1)Fe
(g kg–1)Mn
(g kg–1)Al
(g kg–1)Na
(g kg–1)0 ~ 5 中心 3.54 ± 0.22 Ba 0.50 ± 0.02 Aa 4.33 ± 0.19 Ab 0.56 ± 0.07 Aa 1.48 ± 0.06 Aa 11.00 ± 0.48 Aa 0.53 ± 0.16 Aa 31.12 ± 1.29 Ab 0.18 ± 0.01 Aa 边缘 4.12 ± 0.28 ABa 0.52 ± 0.03 Aa 4.35 ± 0.18 Ab 0.55 ± 0.05 Aa 1.58 ± 0.08 Aa 11.56 ± 0.58 Aa 0.51 ± 0.08 Aa 31.81 ± 1.59 Ab 0.19 ± 0.01 Aa 对照 4.53 ± 0.27 Aa 0.55 ± 0.02 Aa 4.07 ± 0.23 Ab 0.47 ± 0.05 Aa 1.48 ± 0.09 Aa 10.87 ± 0.72 Aa 0.41 ± 0.06 Aa 29.48 ± 1.49 Ab 0.18 ± 0.01 Aa 5 ~ 10 中心 2.52 ± 0.16 Bb 0.39 ± 0.03 Ab 4.62 ± 0.23 Aa 0.34 ± 0.04 Ab 1.61 ± 0.11 Aa 11.81 ± 0.83 Aa 0.47 ± 0.16 Aa 34.99 ± 2.11 Aa 0.20 ± 0.01 Aa 边缘 2.74 ± 0.08 ABb 0.43 ± 0.02 Ab 4.58 ± 0.14 Aa 0.36 ± 0.03 Ab 1.57 ± 0.08 Aa 11.17 ± 0.56 Aa 0.39 ± 0.06 Aa 33.31 ± 1.55 Aa 0.19 ± 0.01 Aa 对照 2.78 ± 0.12 Ab 0.41 ± 0.03 Ab 4.54 ± 0.20 Aa 0.30 ± 0.03 Ab 1.50 ± 0.13 Aa 10.94 ± 0.94 Aa 0.33 ± 0.05 Aa 33.08 ± 1.98 Aa 0.20 ± 0.03 Aa 注:表中数据均以平均值 ± 标准误差表示。不同大写字母表示同一土层不同处理间存在显著差异(P < 0.05),不同小写字母表示同一处理不同土层间存在显著差异(P < 0.05)。 表 2 火堆位置和土层对土壤有效态养分元素的双因素方差分析结果
Table 2 Tow-way ANOVA results for the effects of pile location and soil layer on soil available nutrient elements
因素
FactorANOVA P K Ca Mg Fe Mn Al Na 位置 F 4.871 4.871 7.322 3.029 2.573 0.351 1.325 0.403 P 0.011* 0.012* 0.001** 0.057 0.086 0.705 0.274 0.670 土层 F 0.654 38.508 41.298 72.395 8.233 20.380 44.525 2.460 P 0.422 0.000*** 0.000*** 0.000*** 0.005** 0.000*** 0.000*** 0.123 位置 × 土层 F 3.519 0.418 1.677 1.216 1.375 0.016 0.234 0.239 P 0.037* 0.661 0.197 0.305 0.262 0.984 0.792 0.788 注:*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。 表 3 各主成分特征值、方差占比和累计贡献量
Table 3 Eigenvalue, variance proportion and cumulative contribution of each principal component
土层 (cm)
Soil depth参量
Parameter主成分
Principal componentPC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 0 ~ 5 特征值 4.6630 2.3783 1.4761 0.5505 0.3886 0.2573 0.1737 0.0561 0.0403 0.0161 方差占比 (%) 46.63 23.78 14.76 5.51 3.89 2.57 1.74 0.56 0.40 0.16 累计贡献量 (%) 46.63 70.41 85.17 90.68 94.57 97.14 98.88 99.44 99.84 100 5 ~ 10 特征值 5.0322 2.6296 0.9000 0.6621 0.3231 0.1807 0.1269 0.0686 0.0572 0.0196 方差占比 (%) 50.32 26.30 9.00 6.62 3.23 1.81 1.27 0.69 0.57 0.19 累计贡献量 (%) 50.32 76.62 85.62 92.24 95.47 97.28 98.55 99.24 99.81 100 表 4 前三个PCA主成分土壤因子载荷系数
Table 4 Soil parameter loadings of the first three principal components of PCA
土壤因子
Soil parameter0 ~ 5 cm 5 ~ 10 cm PC1 PC2 PC3 PC1 PC2 PC3 pH −0.255 −0.031 −0.568 −0.026 0.379 0.687 MC 0.349 −0.102 −0.243 −0.346 −0.267 0.182 OM 0.350 −0.389 −0.036 −0.233 −0.480 0.056 TC 0.386 −0.309 −0.020 −0.330 −0.364 −0.010 TN 0.356 −0.375 −0.113 −0.365 −0.288 0.072 AP −0.225 −0.152 0.631 0.253 −0.047 −0.538 AK −0.219 −0.491 0.110 −0.383 0.194 −0.233 ACa −0.328 −0.396 −0.101 −0.362 0.308 −0.073 Ca/Al −0.323 −0.423 0.013 −0.341 0.314 −0.369 Ca/Mg −0.321 −0.027 −0.428 −0.354 0.325 −0.030 注:MC:质量含水量;OM:有机质;TC:全碳;TN:全氮;AP:有效磷;AK:有效钾;Aca:有效钙;Ca/Al:有效钙/有效铝;Ca/Mg:有效钙/有效镁。荷载系数为正表示变量与该主成分为正相关关系,反之。粗体表示最高的载荷系数(载荷系数绝对值大于0.4)。 -
[1] 叶建仁. 松材线虫病在中国的流行现状, 防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1 − 10. [2] 朱宁波. 《松材线虫病防治技术方案》和《松材线虫病疫区和疫木管理办法》重新修订发布[J]. 中国森林病虫, 2019, 38(1): 47 − 48. doi: 10.3969/j.issn.1671-0886.2019.01.013 [3] 王玉哲, 刘俊第, 严 强, 等. 马尾松林采伐迹地火烧黑炭对土壤活性碳氮库的影响[J]. 生态学报, 2018, 38(20): 7198 − 7207. [4] Arocena J M, Opio C. Prescribed fire-induced changes in properties of sub-boreal forest soils[J]. Geoderma, 2003, 113(1-2): 1 − 16. doi: 10.1016/S0016-7061(02)00312-9
[5] 陈亚男, 庄 媛, 闫瑞瑞, 等. 南方长期不同土地利用方式下土壤肥力变化特征——以湖北省长阳县火烧坪乡为例[J]. 植物营养与肥料学报, 2023, 29(1): 188 − 200. doi: 10.11674/zwyf.2022252 [6] 申 航, 王云琦, 王玉杰, 等. 火烧对重庆缙云山土壤化学性质的影响[J]. 中国水土保持科学(中英文), 2023, 21(3): 52 − 59. [7] Magallanes S R S, Giongo M, Carvalho E V, et al. Immediate effects of prescribed burning on chemical properties of the Cerrado soil[J]. Floresta e Ambiente, 2020, 27(3): e20180253. doi: 10.1590/2179-8087.025318
[8] Fernández-García V, Marcos E, Fernández-Guisuraga J M, et al. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire[J]. International Journal of Wildland Fire, 2019, 28(5): 354 − 364. doi: 10.1071/WF18103
[9] 孔健健, 杨 健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013, 32(11): 2837 − 2843. [10] Heydari M, Rostamy A, Najafi F, et al. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl. ) forests in Iran[J]. Journal of Forestry Research, 2017, 28(1): 95 − 104. doi: 10.1007/s11676-016-0299-x
[11] Fornwalt P J, Rhoades C C. Rehabilitating slash pile burn scars in upper montane forests of the Colorado Front Range[J]. Natural Areas Journal, 2011, 31(2): 177 − 182. doi: 10.3375/043.031.0211
[12] Esquilín A E J, Stromberger M E, Massman W J, et al. Microbial community structure and activity in a Colorado Rocky Mountain forest soil scarred by slash pile burning[J]. Soil Biology and Biochemistry, 2007, 39(5): 1111 − 1120. doi: 10.1016/j.soilbio.2006.12.020
[13] Johnson B G, Johnson D W, Miller W W, et al. The effects of slash pile burning on soil and water macronutrients[J]. Soil Science, 2011, 176(8): 413 − 425. doi: 10.1097/SS.0b013e318223cfad
[14] Francos M, Úbeda X, Pereira P. Impact of bonfires on soil properties in an urban park in Vilnius (Lithuania)[J]. Environmental Research, 2020, 181: 108895. doi: 10.1016/j.envres.2019.108895
[15] Pereira P, Cerda A, Martin D, et al. Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania[J]. Science of the Total Environment, 2017, 578: 469 − 475. doi: 10.1016/j.scitotenv.2016.10.210
[16] Johnson B G, Johnson D W. The influence of slash pile burning on meadow and upland forest soil micronutrients in the Sierra Nevada Mountains, United States[J]. Soil Science, 2019, 184(3): 78 − 86. doi: 10.1097/SS.0000000000000256
[17] Rhoades C C, Fegel T S, Zaman T, et al. Are soil changes responsible for persistent slash pile burn scars in lodgepole pine forests?[J]. Forest Ecology and Management, 2021, 490: 119090. doi: 10.1016/j.foreco.2021.119090
[18] Xu Z, Zhao H, Wang G, et al. Inter-month nutrients dynamic and plant growth in Calamagrostis angustifolia community and soil after different burning seasons[J]. Fire, 2023, 6(10): 405. doi: 10.3390/fire6100405
[19] 周建青, 徐爱列. 青海地区泥炭土壤中有机质含量测定方法的比较[J]. 安徽农业科学, 2010, 38(36): 20696 − 20697 + 20700. doi: 10.3969/j.issn.0517-6611.2010.36.073 [20] Sarah P. Soil sodium and potassium adsorption ratio along a Mediterranean–arid transect[J]. Journal of Arid Environments, 2004, 59(4): 731 − 741. doi: 10.1016/j.jaridenv.2004.02.007
[21] Mott C M, Hofstetter R W, Antoninka A J. Post-harvest slash burning in coniferous forests in North America: A review of ecological impacts[J]. Forest Ecology and Management, 2021, 493: 119251. doi: 10.1016/j.foreco.2021.119251
[22] 兰道云, 毕华兴, 赵丹阳, 等. 晋西黄土区不同密度油松人工林保育土壤功能评价[J]. 水土保持学报, 2022, 36(2): 189 − 196. [23] Ando K, Shinjo H, Noro Y, et al. Short-term effects of fire intensity on soil organic matter and nutrient release after slash-and-burn in Eastern Province, Zambia[J]. Soil Science and Plant Nutrition, 2014, 60(2): 173 − 182. doi: 10.1080/00380768.2014.883487
[24] 曾素平, 刘发林, 赵梅芳, 等. 火干扰强度对亚热带四种森林类型土壤理化性质的影响[J]. 生态学报, 2020, 40(1): 233 − 246. [25] 左 壮, 张 韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147 − 154. [26] Moghaddas E E Y, Stephens S L. Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forest[J]. Forest Ecology and Management, 2007, 250(3): 156 − 166. doi: 10.1016/j.foreco.2007.05.011
[27] Alcañiz M, Outeiro L, Francos M, et al. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain)[J]. Science of the Total Environment, 2016, 572: 1329 − 1335. doi: 10.1016/j.scitotenv.2016.01.115
[28] Ross M R, Castle S C, Barger N N. Effects of fuels reductions on plant communities and soils in a Piñon-juniper woodland[J]. Journal of Arid Environments, 2012, 79: 84 − 92. doi: 10.1016/j.jaridenv.2011.11.019
[29] Agbeshie A A, Abugre S, Atta-Darkwa T, et al. A review of the effects of forest fire on soil properties[J]. Journal of Forestry Research, 2022, 33(5): 1 − 23.
[30] 杨予静, 李昌晓, 张 晔, 等. 水淹-干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. 林业科学, 2013, 49(2): 55 − 65. doi: 10.11707/j.1001-7488.20130210 [31] Scharenbroch B C, Nix B, Jacobs K A, et al. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest[J]. Geoderma, 2012, 183: 80 − 91.
[32] Certini G. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1 − 10. doi: 10.1007/s00442-004-1788-8
[33] Chungu D, Ng’andwe P, Mubanga H, et al. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia[J]. Journal of Forestry Research, 2020, 31(5): 1637 − 1645. doi: 10.1007/s11676-019-00977-y
[34] 张秋霞, 吴晓生, 严 强, 等. 森林火烧黑炭对闽楠幼苗生长及林地土壤养分的影响[J]. 森林与环境学报, 2020, 40(5): 459 − 465. [35] Favaretto N, Norton L D, Johnston C T, et al. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium[J]. Soil Science Society of America Journal, 2012, 76(2): 575 − 585. doi: 10.2136/sssaj2011.0223
[36] Manimel Wadu M C W, Michaelis V K, Kroeker S, et al. Exchangeable calcium/magnesium ratio affects phosphorus behavior in calcareous soils[J]. Soil Science Society of America Journal, 2013, 77(6): 2004 − 2013. doi: 10.2136/sssaj2012.0102
[37] 杜大俊, 张秋霞, 任丽红, 等. 马尾松采伐迹地火烧黑炭对土壤营养元素含量的短期影响[J]. 水土保持学报, 2019, 33(5): 157 − 162. [38] Gimeno‐García E, Andreu V, Rubio J L. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape[J]. European Journal of Soil Science, 2000, 51(2): 201 − 210. doi: 10.1046/j.1365-2389.2000.00310.x
[39] Pils J R V, Laird D A, Evangelou V P. Role of cation demixing and quasicrystal formation and breakup on the stability of smectitic colloids[J]. Applied Clay Science, 2007, 35(3-4): 201 − 211. doi: 10.1016/j.clay.2006.09.014