生物质炭配施氮肥对雷竹林土壤养分迁移和土壤酶活性关系的影响研究

胡煜涛, 周军刚, 葛晓改, 高歌, 徐耀文, 周本智, 范建忠, 柴云

胡煜涛, 周军刚, 葛晓改, 高 歌, 徐耀文, 周本智, 范建忠, 柴 云. 生物质炭配施氮肥对雷竹林土壤养分迁移和土壤酶活性关系的影响研究[J]. 土壤通报, 2024, 55(5): 1405 − 1415. DOI: 10.19336/j.cnki.trtb.2023120401
引用本文: 胡煜涛, 周军刚, 葛晓改, 高 歌, 徐耀文, 周本智, 范建忠, 柴 云. 生物质炭配施氮肥对雷竹林土壤养分迁移和土壤酶活性关系的影响研究[J]. 土壤通报, 2024, 55(5): 1405 − 1415. DOI: 10.19336/j.cnki.trtb.2023120401
HU Yu-tao, ZHOU Jun-gang, GE Xiao-gai, GAO Ge, XU Yao-wen, ZHOU Ben-zhi, FAN Jian-zhong, CHAI Yun. Effects of Biochar Combined with Nitrogen Fertilizer on the Relationships between Soil nutrient Migration and Soil Enzyme Activities under Phyllostachys violascen Plantations[J]. Chinese Journal of Soil Science, 2024, 55(5): 1405 − 1415. DOI: 10.19336/j.cnki.trtb.2023120401
Citation: HU Yu-tao, ZHOU Jun-gang, GE Xiao-gai, GAO Ge, XU Yao-wen, ZHOU Ben-zhi, FAN Jian-zhong, CHAI Yun. Effects of Biochar Combined with Nitrogen Fertilizer on the Relationships between Soil nutrient Migration and Soil Enzyme Activities under Phyllostachys violascen Plantations[J]. Chinese Journal of Soil Science, 2024, 55(5): 1405 − 1415. DOI: 10.19336/j.cnki.trtb.2023120401

生物质炭配施氮肥对雷竹林土壤养分迁移和土壤酶活性关系的影响研究

基金项目: 浙江省基础公益研究计划项目(LGN21C030002)和国家自然科学基金(31600492和31670607)资助
详细信息
    作者简介:

    胡煜涛(1997.12),男,浙江慈溪,硕士研究生,森林生态学。E–mail:huyutao1997@nefu.edu.cn

    通讯作者:

    葛晓改: E-mail: gexiaogai2006@163.com

  • 中图分类号: S158

Effects of Biochar Combined with Nitrogen Fertilizer on the Relationships between Soil nutrient Migration and Soil Enzyme Activities under Phyllostachys violascen Plantations

  • 摘要:
    目的 阐明生物质炭配施氮肥对雷竹林土壤养分迁移的影响,为雷竹林土壤质量提升提供理论依据。
    方法 于2020年10月 ~ 2021年5月以浙江省富阳区雷竹林为研究对象,即生物质炭分3个水平B0(0 t hm−2)、B1(10 t hm−2)、B2(30 t hm−2),氮肥分3个水平N0(0 t hm−2)、N1(0.5 t hm−2)、N2(1 t hm−2),生物质炭配施氮肥B0N0、B0N1、B0N2、B1N0、B1N1、B1N2、B2N0、B2N1、B2N2共9个处理,开展生物质炭配施氮肥对雷竹林土壤养分垂直迁移和土壤酶活性的影响研究,为雷竹林经营提供更加全面、精确的科学依据和指导。
    结果 结果表明:①生物质炭配施氮肥增加土壤养分,在0 ~ 15 cm土层中,低、高生物质炭配施氮肥显著增加土壤总磷,单施生物质炭显著增加土壤速效钾,生物质炭配施氮肥均显著增加土壤总氮、速效磷;在15 ~ 30 cm和30 ~ 50 cm土层中,生物质炭配施氮肥均显著增加土壤速效钾。在垂直方向上,生物质炭单施或配施氮肥在一定程度上促进养分迁移。②在水平方向相同土层中,纤维二糖酶,β-葡萄糖苷酶,β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶活性随生物质炭或氮肥添加量呈现不变或递增结果,多酚氧化酶活性在0 ~ 15 cm土层与氮肥添加量呈正相关。③土壤养分与土壤酶活性间存在相关性,土壤总氮、土壤总磷和土壤速效钾与纤维二糖酶、β-葡萄糖苷酶、β-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶呈显著正相关(P< 0.05);土壤有机碳、土壤速效磷则与以上水解酶呈显著负相关(P < 0.05)。
    结论 雷竹林中适量的生物质炭配施氮肥对土壤养分及酶正向影响显著,生物质炭配施氮肥引起土壤酶活性变化是土壤养分迁移的关键因素,适量的生物质炭配施氮肥对提升雷竹林土壤有效养分和土壤酶活性有重要意义。

     

    Abstract:
    Objective Effects of biochar combined with nitrogen fertilizer on the vertical migration of soil nutrients were studied to provide theoretical basis for improving soil quality under Phyllostachys violascens plantations.
    Method The study object was P. violascens plantations, and the experiment was conducted from October 2020 to May 2021 in Fuyang District, Zhejiang Province. The experiment included nine treatments, three biochar levels (B0 0 t ha−1, B1 10 t ha−1, B2 30 t ha−1) and three nitrogen fertilizer levels (N0 0 t ha−1, N1 0.5 t ha−1, N2 1 t ha−1), B0N0, B0N1, B0N2, B1N0, B1N1, B1N2, B2N0, B2N1, B2N2. The vertical migration of soil nutrients and soil enzyme activities of P. violascens plantations were studied to provide a more comprehensive and precise scientific basis and guidance for the management under biochar combined with nitrogen fertilizer.
    Result ① Biochar combined with nitrogen fertilizer increased soil nutrients. In the 0 ~ 15 cm soil layer, the combined application of low and high dosage biochar significantly increased soil total phosphorus, only biochar addition significantly increased soil available potassium, and the combined application of biochar significantly increased soil total nitrogen and available phosphorus. In 15 ~ 30 cm and 30 ~ 50 cm soil layer, biochar combined with nitrogen fertilizer significantly increased soil available potassium. In soil vertical direction, biochar alone or in combined with fertilizer both promoted nutrient transport in some extent. ② In the same soil layer, the activities of cellobiohydrolase, β-glucosidase, β-N-acetyl-glucosidase and leucine aminopeptidase kept constant or increasing with the amount of biochar or nitrogen application. The polyphenol oxidase activity was positively correlated with nitrogen addition dosage in 0 ~ 15 cm soil layer. ③ There was a correlation between soil nutrients and soil enzyme activities. Soil total nitrogen, soil total phosphorus and soil available potassium were significantly positively correlated with cellobiase, β-glucosidase, β-N-acetylglucosaminase and leucine aminopeptidase (P < 0.05), while soil organic carbon and soil available phosphorus were significantly negatively correlated with the above hydrolases (P < 0.05).
    Conclusion  Appropriate amount of biochar combined with nitrogen fertilizer had significant positive effects on soil nutrients and enzymes. The change of soil enzyme activities caused by biochar combined with nitrogen fertilizer was the key factor for soil nutrient migration. Appropriate amount of biochar combined with nitrogen fertilizer was significant for improving soil available nutrients and soil enzyme activities under P. violascen plantation.

     

  • 图  1   研究区位图

    Figure  1.   The location of the study area plot

    图  2   试验小区布置图

    Figure  2.   The layout of the test plot

    图  3   生物质炭电镜扫描图

    Figure  3.   Electron microscope scan of biochar

    图  4   生物质炭配施氮肥对雷竹林不同土层养分含量的影响

    Figure  4.   Effects of biochar combined with fertilizers on soil nutrient contents in different soil layers under P. praecox plantations

    图  5   生物质炭配施N肥下土壤酶活性对土壤养分影响的典范对应分析

    Figure  5.   Canonical correspondence analysis on the effect of soil enzyme activities on soil nutrients under biochar combined with N fertilizer on P. praecox plantations.

    表  1   生物质炭配施氮肥下雷竹林不同土壤层水解酶变化

    Table  1   Effect of biochar combined with fertilizer on hydrolase activities in different soil layers under P. praecox plantations

    土壤酶
    Soil enzyme
    无生物质炭配施氮肥
    Non biochar treatment
    低生物质炭配施氮肥
    Lower biochar treatment
    高生物质炭配施氮肥
    Higher biochar treatment
    B0N0 B0N1 B0N2 B1N0 B1N1 B1N2 B2N0 B2N1 B2N2
    0 ~ 15 cm
    纤维二糖水解酶(CB, µmol L–1 0.11 ± 0.00 f 0.11 ± 0.00 f 0.13 ± 0.00 de 0.12 ± 0.00 ef 0.15 ± 0.01 c 0.16 ± 0.00 b 0.14 ± 0.00 cd 0.16 ± 0.01 b 0.18 ± 0.01 a
    β–葡萄糖苷酶(BG, µmol L–1 0.06 ± 0.01 d 0.08 ± 0.01 bcd 0.07 ± 0.01 cd 0.08 ± 0.01 bc 0.08 ± 0.01 b 0.08 ± 0.01 bc 0.08 ± 0.01 bcd 0.10 ± 0.01 a 0.09 ± 0.01 ab
    β–N–乙酰氨基葡萄糖苷酶
    (NAG, µmol L–1
    2.43 ± 0.43 e 3.21 ± 0.40 d 3.64 ± 0.51 cd 3.06 ± 0.22 de 3.29 ± 0.45 d 4.39 ± 0.32 b 3.36 ± 0.28 d 4.26 ± 0.35 bc 5.32 ± 0.37 a
    亮氨酸氨基肽酶(LAP, µmol L–1 12.16 ± 1.52 e 12.60 ± 0.48 e 12.60 ± 1.12 e 14.14 ± 1.52 de 13.82 ± 0.51 de 16.32 ± 1.37 bc 14.91 ± 1.45 cd 17.23 ± 1.16 b 19.94 ± 0.52 a
    15 ~ 30 cm
    纤维二糖水解酶(CB, mol L–1 0.11 ± 0.01 f 0.12 ± 0.01 def 0.13 ± 0.01 cde 0.13 ± 0.01 cde 0.15 ± 0.01 ab 0.14 ± 0.01 bc 0.12 ± 0.00 ef 0.13 ± 0.01 bcd 0.15 ± 0.00 a
    β–葡萄糖苷酶(BG, µmol L–1 0.04 ± 0.01 d 0.06 ± 0.01 abc 0.05 ± 0.01 cd 0.05 ± 0.01 bc 0.06 ± 0.01 abc 0.06 ± 0.01 abc 0.06 ± 0.00 abc 0.07 ± 0.11 a 0.07 ± 0.00 ab
    β–N–乙酰氨基葡萄糖苷酶
    (NAG, µmol L–1
    1.98 ± 0.43 b 2.86 ± 0.60 a 2.72 ± 0.51 ab 2.64 ± 0.94 ab 2.97 ± 0.19 a 2.76 ± 0.22 ab 1.98 ± 0.20 b 3.22 ± 0.24 a 3.41 ± 0.18 a
    亮氨酸氨基肽酶(LAP, µmol L–1 10.45 ± 1.03 c 9.62 ± 0.87 c 10.62 ± 1.28 c 11.27 ± 0.76 bc 11.44 ± 0.54 bc 12.66 ± 1.84 b 11.58 ± 0.91 bc 16.11 ± 0.64 a 13.23 ± 1.02 b
    30 ~ 50 cm
    纤维二糖水解酶(CB, µmol L–1 0.10 ± 0.01 d 0.11 ± 0.01 cd 0.12 ± 0.01 c 0.12 ± 0.01 c 0.13 ± 0.01 abc 0.14 ± 0.01 ab 0.13 ± 0.00 bc 0.12 ± 0.01 c 0.15 ± 0.01 a
    β–葡萄糖苷酶(BG, µmol L–1 0.04 ± 0.01 cd 0.04 ± 0.01 bc 0.05 ± 0.01 ab 0.04 ± 0.00 cd 0.05 ± 0.00 b 0.06 ± 0.00 a 0.04 ± 0.00 cd 0.06 ± 0.00 a 0.03 ± 0.00 d
    β–N–乙酰氨基葡萄糖苷酶
    (NAG, µmol L–1
    1.81 ± 0.56 e 2.84 ± 0.47 abc 3.15 ± 0.16 a 1.98 ± 0.24 de 2.35 ± 0.25 bcde 3.07 ± 0.16 ab 2.14 ± 0.45 cde 2.85 ± 0.36 abcd 3.04 ± 0.68 ab
    亮氨酸氨基肽酶(LAP, µmol L–1 7.25 ± 0.28 e 8.30 ± 0.64 de 10.09 ± 1.72 bc 8.30 ± 1.10 de 7.93 ± 0.41 de 11.55 ± 1.34 ab 7.89 ± 1.01 de 9.20 ± 0.60 cd 12.96 ± 0.57 a
      注:不同小写字母表示同一土层不同处理间差异显著(P < 0.05)。
    下载: 导出CSV

    表  2   生物质炭配施氮肥下土壤酶活性、土层和处理间双因素方差分析

    Table  2   Two-way ANOVA of soil enzymes with soil layer and treatment under biochar nitrogen fertilizer combined application.

    土壤酶
    Soil enzyme
    处理
    Treatment
    df F P
    N-乙酰葡糖苷酶 土层 2 55.110 **
    处理 8 16.525 **
    土层 × 处理 16 2.610 *
    β-葡糖苷酶 土层 2 157.192 **
    处理 8 12.220 **
    土层 × 处理 16 3.193 **
    亮氨酸氨基肽酶 土层 2 187.797 **
    处理 8 28.617 **
    土层 × 处理 16 4.353 **
    纤维素二糖水解酶 土层 2 23.619 **
    处理 8 31.340 **
    土层 × 处理 16 3.874 **
    多酚氧化酶 土层 2 4.650 *
    处理 8 13.380 **
    土层 × 处理 16 1.669 0.082
    过氧化物酶 土层 2 .838 0.438
    处理 8 12.911 **
    土层 × 处理 16 .921 0.551
      注: ***表示分别表示P < 0.01、P < 0.05。
    下载: 导出CSV

    表  3   生物质炭配施氮肥下雷竹林不同土壤层氧化还原酶变化

    Table  3   Effect of biochar combined with fertilizer on soil oxidoreductase activity in different soil layers under P. praecox plantations

    土壤酶
    Soil enzyme
    无生物质炭配施氮肥
    Non biochar treatment
    低生物质炭配施氮肥
    Lower biochar treatment
    高生物质炭配施氮肥
    Higher biochar treatment
    B0N0 B0N1 B0N2 B1N0 B1N1 B1N2 B2N0 B2N1 B2N2
    0 ~ 15 cm
    多酚氧化酶
    (PPO, mmol L–1
    60.20 ± 7.94 c 75.87 ± 6.87 b 68.57 ± 6.88 bc 71.80 ± 6.04 bc 93.77 ± 5.80 a 77.90 ± 7.65 b 68.30 ± 9.09 bc 95.97 ± 8.00 a 75.67 ± 5.54 b
    过氧化物酶
    (PER, mmol L–1
    1349.70 ± 52.51 b 1370.00 ± 78.86 ab 1560.60 ± 32.89 a 1356.10 ± 44.93 b 1402.33 ± 136.74 ab 1451.13 ± 187.40 ab 1551.93 ± 88.39 a 1515.10 ± 95.65 ab 1396.27 ± 72.86 ab
    15 ~ 30 cm
    多酚氧化酶
    (PPO, mmol L–1
    61.50 ± 7.72 cd 79.20 ± 10.16 b 61.03 ± 9.39 cd 71.80 ± 9.53 bcd 98.30 ± 9.15 a 75.23 ± 10.05 bc 73.40 ± 7.25 bcd 79.97 ± 9.66 b 57.23 ± 7.27 d
    过氧化物酶
    (PER, mmol L–1
    1382.27 ± 97.65 bc 1350.83 ± 12.70 bc 1563.07 ± 77.49 a 1311.00 ± 80.16 bc 1407.23 ± 100.50 bc 1372.03 ± 29.81 bc 1603.07 ± 112.29 a 1434.40 ± 43.24 b 1275.90 ± 33.18 c
    30 ~ 50 cm
    多酚氧化酶
    (PPO, mmol L–1
    66.37 ± 9.56 b 71.37 ± 10.58 b 62.90 ± 11.27 b 65.43 ± 10.01 b 91.10 ± 5.60 a 66.67 ± 6.58 b 59.27 ± 4.85 b 71.30 ± 7.54 b 72.17 ± 7.34 b
    过氧化物酶
    (PER, mmol L–1
    1338.70 ± 87.99 cd 1321.10 ± 90.54 cd 1740.50 ± 172.44 a 1348.83 ± 149.56 cd 1366.40 ± 94.71 cd 1359.57 ± 36.73 cd 1667.17 ± 150.57 ab 1532.03 ± 81.92 bc 1300.17 ± 79.15 d
      注:不同小写字母表示同一土层不同处理间差异显著(P < 0.05)。
    下载: 导出CSV
  • [1]

    Lehmann J, Gaunt J, Rondon M. Biochar sequestration terrestrial ecosystems – a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403 − 427. doi: 10.1007/s11027-005-9006-5

    [2] 林海萍, 姜培坤, 范良敏. 不同经营措施对雷竹笋的营养品质效应[J]. 竹子研究汇刊, 2004(1): 21 − 23 + 27.
    [3] 孟赐福, 沈 菁, 姜培坤, 等. 不同施肥处理对雷竹林土壤养分平衡和竹笋产量的影响[J]. 竹子研究汇刊, 2009, 28(4): 11 − 17.
    [4]

    Dominic W, James E, Amonette F, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1: 1 − 9.

    [5]

    Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review[J]. Biology and Fertility of Soils, 2002, 35: 219 − 230. doi: 10.1007/s00374-002-0466-4

    [6] 李 莹. 杉木生物质炭特性及其对土壤碳稳定性影响的研究[D]. 福州: 福建农林大学, 2018.
    [7] 王建伟. 生物质炭和磷添加对油茶林土壤团聚体及磷组分转化和有效性的影响[D]. 南昌: 江西农业大学, 2020.
    [8]

    Tian J, Wang J, Dippold M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of The Total Environment, 2016, 556: 89 − 97. doi: 10.1016/j.scitotenv.2016.03.010

    [9]

    Backer R G M, Saeed W, Seguin P, et al. Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions[J]. Plant and Soil, 2017, 415: 465 − 477. doi: 10.1007/s11104-017-3180-6

    [10] 靳泽文. 生物质炭与氮肥配施对旱地红壤土壤肥力主控因素及作物产量的持续影响[D]. 南京: 南京农业大学, 2019.
    [11] 王 峰, 吴志丹, 陈玉真, 等. 生物质炭配施氮肥对茶树生长及氮素利用率的影响[J]. 茶叶科学, 2018, 38(4): 331 − 341.
    [12]

    Ding Y, Liu Y X, Wu W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water Air & Soil Pollution, 2010, 213: 47 − 55.

    [13]

    Ameloot N, De N S, Jegajeevagan K, et al. Short – term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry, 2013, 57: 401 − 410. doi: 10.1016/j.soilbio.2012.10.025

    [14]

    Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota–a review[J]. Soil Biology and Biochemistry, 2011, 43: 1812 − 1836. doi: 10.1016/j.soilbio.2011.04.022

    [15] 黄凯平. 氮沉降和施生物质炭对毛竹林土壤呼吸组分的影响[D]. 杭州: 浙江农林大学, 2021.
    [16] 卢伟伟, 耿慧丽, 张伊蕊, 等. 生物质炭对杨树人工林土壤微生物群落的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 143 − 150.
    [17] 陆人方, 葛晓改, 王灵玲, 等. 生物质炭添加对马尾松和杉木根系及土壤微生物结构的影响[J]. 生态环境学报, 2020, 29(11): 2153 − 2162.
    [18] 陈 健, 卢伟伟, 杜娅茹, 等. 生物质炭和氮肥对马尾松人工林土壤微生物群落结构和酶活性的影响[J]. 环境科学学报, 2024, 44(4): 333 − 343.
    [19]

    Verheijen F G A, Graber E R, Ameloot N, et al. Biochars in soils: new insights and emerging research needs[J]. European Journal of Soil Science, 2014, 65: 22 − 27. doi: 10.1111/ejss.12127

    [20] 吴少青, 夏 祥, 向治宇, 等. 全自动凯氏定氮仪测定水系沉积物、土壤、岩石全氮含量方法的优化探索[J]. 当代化工研究, 2024(4): 47 − 49.
    [21] 双 龙, 妮萨娜, 杜 江, 等. 重铬酸钾氧化-外加热法测定化探土壤样品中有机碳含量[J]. 安徽化工, 2016, 42(4): 110 − 112.
    [22] 钱淑萍. 土壤速效磷测定方法探讨[J]. 新疆农业科技, 1999, 40(2): 24 − 25.
    [23] 中华人民共和国林业行业标准. LY/T 1232—1999, 森林土壤全磷的测定[S].
    [24] 胡 俊. 土壤中有效氮磷钾的快速检验[J]. 生物化工, 2018, 4(4): 30 − 36.
    [25]

    Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long – term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34: 1309 − 1315. doi: 10.1016/S0038-0717(02)00074-3

    [26]

    Sofi J A, Lone A H, Ganie M A, et al. Soil microbiological activity and carbon dynamics in the current climate scenarios: A review[J]. Pedosphere, 2016, 26: 577 − 591. doi: 10.1016/S1002-0160(15)60068-6

    [27] 郭志明, 张心昱, 李丹丹, 等. 温带森林不同海拔土壤有机碳及相关胞外酶活性特征[J]. 应用生态学报, 2017, 28(9): 2888 − 2896.
    [28]

    Monreal C M, Bergstrom D W. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil bio – chemical quality[J]. Canadian Journal of Soil Science, 2000, 80: 419 − 428. doi: 10.4141/S99-088

    [29]

    Sinsabaughrl, Gallo M E, Lauberc, et al. Extracellular enzyme activities and soil organic matter dynamics for northern hard – wood forests receiving simulated nitrogen deposition[J]. Biogeochemistry, 2005, 75: 201 − 215. doi: 10.1007/s10533-004-7112-1

    [30]

    Lehmann J D, Joseph S. Biochar for Environmental Management: Science and Technology[M]. Earthscan, London & Sterling, 2009, 416.

    [31] 李静静, 丁松爽, 李艳平, 等. 生物炭与氮肥配施对烤烟干物质积累及土壤生物学特性的影响[J]. 浙江农业学报, 2016, 28(1): 96 − 103.
    [32] 赵 军, 耿增超, 尚 杰, 等. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J]. 生态学报, 2016, 36(8): 2355 − 2362.
    [33] 韩召强, 陈效民, 陶朋闯, 等. 添加生物质炭对旱地红壤中硝态氮水平运移的影响[J]. 水土保持通报, 2017, 37(4): 47 − 51 + 57.
    [34]

    Bowles M T, Acosta-martínez V, Calderón F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J]. Soil Biology and Biochemistry, 2014, 68: 252 − 262. doi: 10.1016/j.soilbio.2013.10.004

    [35] 徐福利, 梁银丽, 张成娥, 等. 施肥对日光温室黄瓜生长和土壤生物学特性的影响[J]. 应用生态学报, 2014, 15(7): 1227 − 1230.
    [36]

    Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?[J]. Biogeochemistry, 2007, 85: 235 − 252. doi: 10.1007/s10533-007-9132-0

    [37] 曾 艳, 周柳强, 黄美福, 等. 不同施氮量对桑园红壤耕层酶活性的影响[J]. 生态学报, 2014, 34(18): 5306 − 5310.
    [38] 彭映平, 和文祥, 王紫泉, 等. 黄土高原旱区绿肥定位试验土壤化学性质及酶活性特征研究[J]. 西北农林科技大学学报(自然科学版), 2015, 43(9): 131 − 138,149.
    [39]

    Czimczik C I, Masiello C. Controls on black carbon storage in soils[J]. Global Biogeochemical Cycles, 2007, 21: 1 − 8.

    [40]

    Rao M A. Interactions between xenobiotics and microbial and enzymatic soil activity[J]. Critical Reviews in Environmental Science & Technology, 2008, 38(4): 269 − 310.1

    [41]

    Burns R G, Dick R P. Enzymes in the Environment: Ecology, Activity and Applications[N]. New York: Marcel Dkker, 2002, 1 – 342.

    [42]

    Yang W Q, Wang K Y. Advances in forest soil enzymology[J]. Scientia Silvae Sinicae, 2004, 40(2): 152 − 159.

    [43]

    Wang B, Allison S D. Emergent properties of organic matter decomposition by soil enzymes [J]. Soil Biology and Biochemistry, 2019, 136: 107, 522.

    [44] 金冬霞, 王凯君. 规模化畜禽养殖场污染防治综合对策[J]. 环境保护, 2002, 23(12): 18 − 20.
    [45]

    Jindo K, Sánchez-monedero M A, Hernández T, et al. Biochar influences the microbial community structure during manure composting with agricultural wastes[J]. Science of the Total Environment, 2012, 416: 476 − 481. doi: 10.1016/j.scitotenv.2011.12.009

    [46] 张 闯, 邹洪涛, 张心昱, 等. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响[J]. 应用生态学报, 2016, 27(11): 3427 − 3434.
    [47]

    Liu X, Wang J S, Zhao X. Effects of simulated nitrogen deposition on the soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain[J]. Acta Eclogica Sinica, 2015, 35(14): 4620 − 4626.

    [48] 赵睿宇, 李正才, 王 斌, 等. 毛竹林地覆盖和翻耕对土壤酶活性及土壤养分含量的影响[J]. 林业科学研究, 2019, 32(5): 67 − 73.
    [49]

    Zhang X Y, Dong W Y, Dai X Q, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer[J]. Science of the Total Environment, 2015, 536: 59 − 67. doi: 10.1016/j.scitotenv.2015.07.043

    [50]

    Xiao Y, Huang Z G, Lu X G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering, 2015, 82: 381 − 389. doi: 10.1016/j.ecoleng.2015.05.015

    [51]

    Ernesto B, Gren G I. Theoretical analysis of microbial biomass dynamics in soils[J]. Soil Biology and Biochemistry, 1994, 26: 143 − 148. doi: 10.1016/0038-0717(94)90206-2

    [52]

    El-naggar A, Lee M-H, Hur J, et al. Biochar-induced metal immobilization and soil biogeochemical process: an integrated mechanistic approach[J]. Science of The Total Environment, 2020, 698: 134112. doi: 10.1016/j.scitotenv.2019.134112

    [53] 石丽红, 李 超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3): 921 − 930
    [54] 刘秀清, 章 铁, 孙晓莉. 沿江丘陵区土壤酶活性与土壤肥力的关系[J]. 中国农学通报, 2007, 23(7): 341 − 344.
    [55] 陈光升, 钟章成, 齐代华. 缙云山常绿阔叶林土壤酶活性与土壤肥力的关系[J]. 四川师范大学学报, 2002, 23(1): 19 − 23.
    [56] 陈强龙, 谷 洁, 高 华, 等. 秸秆还田对土壤脱氢酶和多酚氧化酶活性动态变化的影响[J]. 干旱地区农业研究, 2009, 27(4): 146 − 151.
    [57] 宋海燕, 李传荣, 许景伟, 等. 滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J]. 林业科学, 2007, 43(1): 28 − 33.
    [58] 杨文彬, 耿玉清, 王冬梅. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 2015, 35(14): 4604 − 4612.
    [59] 杨 阳, 吴左娜, 张宏坤, 等. 不同培肥方式对盐碱土脲酶和过氧化氢酶活性的影响[J]. 中国农学通报, 2013, 29(15): 84 − 88.
图(5)  /  表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 修回日期:  2024-04-04
  • 录用日期:  2024-04-15
  • 刊出日期:  2024-10-05

目录

    /

    返回文章
    返回
    Baidu
    map